Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 139: 105670, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646006

RESUMO

As the need for vascular access devices (VADs) continues to increase, so does the need for innovative designs and materials that can improve placement and optimize patient outcomes. Commercially available peripherally inserted central venous catheters (PICCs) are in high demand due to their ease of use and low cost. However, they are constructed of materials that can contribute to vascular injury and result in complications such as clotting, catheter failure, and infection. This study investigated the surface and frictional properties of a HydroPICC® device constructed of a novel, inherently lubricious bulk hydrogel. Investigators posited that these materials would lower the forces required to advance and retract the HydroPICC® devices and that the measured forces are significantly lower than those of two commercially available PICCs made of conventional thermoplastic polyurethane. The HydroPICC® device had a lower insertion and retraction force compared to both the PowerPICCTM and BioFloTM control devices based on an unpaired, two-sided t-test (P < .001). The HydroPICC® also exhibited a statistically significant decrease in average force when compared to both conventional PICCs (P < .001 and P = .001). When compared to PowerPICCTM, the lubricious high-strength HydroPICC® hydrogel device exhibited an 84% ± 25% reduction in average tracking force; additionally, when compared to a fluoro-oligomer modified TPU catheter (BioFloTM), the HydroPICC® device exhibited a 90 ± 32% reduction in average tracking force. The HydroPICC® technology represents a new method to reduce frictional forces of implantable devices. Clinical trials are needed to determine whether the differences in frictional properties between conventional VADs and HydroPICC® devices translate into improved clinical outcomes.


Assuntos
Cateterismo Venoso Central , Cateterismo Periférico , Humanos , Cateterismo Venoso Central/métodos , Hidrogéis , Cateterismo Periférico/métodos , Poliuretanos , Catéteres
2.
J Biomater Sci Polym Ed ; 31(5): 601-621, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31900047

RESUMO

Adherence of proteins, cells, and microorganisms to the surface of biomaterials used for vascular access contribute to device failure by thrombosis, occlusions, and infections. Current technologies for inhibiting these complications are limited to coatings and additives that are limited in duration of efficacy and often induce adverse side effects. In this work, we developed a novel composite hydrogel structure comprising of a porous poly(vinyl alcohol) (PVA) that is impregnated with poly(acrylic acid) (PAA) and heat treated to create a physically cross-linked high-strength hydrogel material. The swelling and mechanical properties can be controlled by the temperature and duration of heat treatment to increase the cross-link density of the matrix. The heat treated composite PVA/PAA hydrogel exhibits both the mechanical strength and durability of thermoplastic polyurethanes (TPUs) and the inherently non-thrombogenic surface functionality of PVA-based hydrogels without the use of chemical cross-linking agents. The composite hydrogels were found to maintain their mechanical integrity and surface functionality after accelerated aging in a simulated-use in vitro model for 162.5 days real-time equivalent. Relative to commercial catheter materials, the composite PVA/PAA hydrogel exhibited up to an average of 97% reduction in platelet adhesion when exposed to an in vitro blood loop model and a lower rate of tip occlusion due to thrombosis. This high-strength thromboresistant hydrogel could have a major impact as a novel biomaterial for use in vascular access applications to improve patient health.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Fenômenos Mecânicos , Álcool de Polivinil/química , Temperatura , Resinas Acrílicas/química , Vasos Sanguíneos/patologia , Linhagem Celular , Teste de Materiais , Álcool de Polivinil/efeitos adversos , Porosidade , Trombose/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...