Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 30(10): 2068-2081, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31332742

RESUMO

Zinc fingers are proteins that are characterized by the coordination of zinc ions by an amino acid sequence that commonly contains two histidines and two cysteines (2His-2Cys motif). Investigations of oligopeptides that contain the 2His-2Cys motif, e.g., acetyl-His1-Cys2-Gly3-Pro4-Tyr5-His6-Cys7, have discovered they exhibit pH-dependent Zn(II) chelation and have redox activities with Cu(I/II), forming a variety of metal complexes. To further understand how these 2His-2Cys oligopeptides bind these metal ions, we have undertaken a series of ion mobility-mass spectrometry and B3LYP/LanL2DZ computational studies of structurally related heptapeptides. Starting with the sequence above, we have modified the potential His, Cys, or C-terminus binding sites and report how these changes in primary structure affect the oligopeptides positive and negative charge states, conformational structure, collision-induced breakdown energies, and how effectively Zn(II) binds to these sequences. The results show evidence that the weak acid-base properties of Cys-His are intrinsically linked and can result in an intramolecular salt-bridged network that affects the oligopeptide properties.


Assuntos
Cisteína/química , Histidina/química , Oligopeptídeos , Zinco , Espectrometria de Massas , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Ligação Proteica , Zinco/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...