Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Neurosci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635177

RESUMO

Prenatal alcohol exposure can produce disruptions in a wide range of cognitive functions, but it is especially detrimental to spatial navigation. In open environments, rodents organize their spatial behaviors around centralized locations, termed home bases, from which they make circuitous and slow locomotor trips (progressions) into the rest of the environment. Open-field behaviors are organized even under darkened test conditions, suggesting a role for self-motion cues (vestibular, motor, etc.). The impact of moderate prenatal alcohol exposure (mPAE) on the organization of spontaneous open-field behaviors under darkened conditions has not been investigated. Here we tested adult female and male rats with mPAE or saccharin control exposure in a circular open field for 30 min in a testing room that was made completely dark. While general locomotion, as measured by reductions in travel distance and increased stop duration, decreased across the test session, the organization of these behaviors, as measured by stop duration, home base establishment, home base stability, progression accuracy, and scaling of peak speeds with progression length, did not differ between mPAE and saccharin control rats. Together, the findings strongly suggest that spontaneous movement organization in relation to self-motion cues remains intact in adult mPAE rats. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

2.
Front Mol Neurosci ; 17: 1342622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375501

RESUMO

Here, we review the basis of contextual memory at a conceptual and cellular level. We begin with an overview of the philosophical foundations of traversing space, followed by theories covering the material bases of contextual representations in the hippocampus (engrams), exploring functional characteristics of the cells and subfields within. Next, we explore various methodological approaches for investigating contextual memory engrams, emphasizing plasticity mechanisms. This leads us to discuss the role of neuromodulatory inputs in governing these dynamic changes. We then outline a recent hypothesis involving noradrenergic and dopaminergic projections from the locus coeruleus (LC) to different subregions of the hippocampus, in sculpting contextual representations, giving a brief description of the neuroanatomical and physiological properties of the LC. Finally, we examine how activity in the LC influences contextual memory processes through synaptic plasticity mechanisms to alter hippocampal engrams. Overall, we find that phasic activation of the LC plays an important role in promoting new learning and altering mnemonic processes at the behavioral and cellular level through the neuromodulatory influence of NE/DA in the hippocampus. These findings may provide insight into mechanisms of hippocampal remapping and memory updating, memory processes that are potentially dysregulated in certain psychiatric and neurodegenerative disorders.

3.
Biosensors (Basel) ; 13(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831917

RESUMO

The identification of protein aggregates as biomarkers for neurodegeneration is an area of interest for disease diagnosis and treatment development. In this work, we present novel super luminescent conjugated polyelectrolyte molecules as ex vivo sensors for tau-paired helical filaments (PHFs) and amyloid-ß (Aß) plaques. We evaluated the use of two oligo-p-phenylene ethynylenes (OPEs), anionic OPE12- and cationic OPE24+, as stains for fibrillar protein pathology in brain sections of transgenic mouse (rTg4510) and rat (TgF344-AD) models of Alzheimer's disease (AD) tauopathy, and post-mortem brain sections from human frontotemporal dementia (FTD). OPE12- displayed selectivity for PHFs in fluorimetry assays and strong staining of neurofibrillary tangles (NFTs) in mouse and human brain tissue sections, while OPE24+ stained both NFTs and Aß plaques. Both OPEs stained the brain sections with limited background or non-specific staining. This novel family of sensors outperformed the gold-standard dye Thioflavin T in sensing capacities and co-stained with conventional phosphorylated tau (AT180) and Aß (4G8) antibodies. As the OPEs readily bind protein amyloids in vitro and ex vivo, they are selective and rapid tools for identifying proteopathic inclusions relevant to AD. Such OPEs can be useful in understanding pathogenesis and in creating in vivo diagnostically relevant detection tools for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Camundongos , Humanos , Ratos , Animais , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide , Proteínas tau , Doença de Alzheimer/diagnóstico , Encéfalo/metabolismo , Peptídeos beta-Amiloides , Coloração e Rotulagem , Etilenos/metabolismo
4.
Alcohol Clin Exp Res ; 46(5): 861-875, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315075

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) can produce deficits in a wide range of cognitive functions but is especially detrimental to behaviors requiring accurate spatial information processing. In open field environments, spatial behavior is organized such that animals establish "home bases" marked by long stops focused around one location. Progressions away from the home base are circuitous and slow, while progressions directed toward the home base are non-circuitous and fast. The impact of PAE on the organization of open field behavior has not been experimentally investigated. METHODS: In the present study, adult female and male rats with moderate PAE or saccharin exposure locomoted a circular high walled open field for 30 minutes under lighted conditions. RESULTS: The findings indicate that PAE and sex influence the organization of open field behavior. Consistent with previous literature, PAE rats exhibited greater locomotion in the open field. Novel findings from the current study indicate that PAE and sex also impact open field measures specific to spatial orientation. While all rats established a home base on the periphery of the open field, PAE rats, particularly males, exhibited significantly less clustered home base stopping with smaller changes in heading between stops. PAE also impaired progression measures specific to distance estimation, while sex alone impacted progression measures specific to direction estimation. CONCLUSIONS: These findings support the conclusion that adult male rats have an increased susceptibility to the effects of PAE on the organization of open field behavior.


Assuntos
Etanol , Efeitos Tardios da Exposição Pré-Natal , Animais , Etanol/toxicidade , Comportamento Exploratório , Feminino , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Percepção Espacial
5.
Neurosci Biobehav Rev ; 127: 647-658, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33979573

RESUMO

Alzheimer's disease (AD) pathology is commonly associated with cognitive decline but is also composed of neuropsychiatric symptoms including psychological distress and alterations in mood, including anxiety and depression. Emotional dysfunction in AD is frequently modeled using tests of anxiety-like behavior in transgenic rodents. These tests often include the elevated plus-maze, light/dark test and open field test. In this review, we describe prototypical behavioral paradigms used to examine emotional dysfunction in transgenic models of AD, specifically anxiety-like behavior. Next, we summarize the results of studies examining anxiety-like behavior in transgenic rodents, noting that the behavioral outcomes using these paradigms have produced inconsistent results. We suggest that future research will benefit from using a battery of tests to examine emotional behavior in transgenic AD models. We conclude by discussing putative, overlapping neurobiological mechanisms underlying AD-related neuropathology, stress and anxiety-like behavior reported in AD models.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Animais , Ansiedade , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Roedores
6.
Behav Brain Res ; 360: 7-15, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30472112

RESUMO

Spatial processing is a critical component for survival. This domain of information processing has been extensively studied in rats and mice. Limited work has examined the capacity of other rodent species, like the prairie vole (Microtus ochrogaster), to process spatial information. The Morris water task (MWT) is a classic spatial task that has been used to examine spatial cognition in rodents. This task involves an animal developing configural relationships between extra-maze cues and the location of a hidden platform to successfully escape from a pool of water. The current study compared performance in the MWT between rats and prairie voles. Rats were observed to outperform prairie voles in key aspects of the task including latency to find the platform, directness of swim paths to the platform, and degrees of heading error. These results may be attributed to potential interspecies differences in spatial cognition, stress reactivity, physiology, or motivation. This study provides the foundation for future work investigating the spatial cognition of prairie voles and the factors that contribute to water task performance in rodents.


Assuntos
Desempenho Psicomotor/fisiologia , Reconhecimento Psicológico/fisiologia , Aprendizagem Espacial/fisiologia , Análise de Variância , Animais , Arvicolinae , Sinais (Psicologia) , Feminino , Movimento (Física) , Movimento , Ratos , Ratos Long-Evans , Tempo de Reação/fisiologia , Especificidade da Espécie , Natação
7.
Learn Motiv ; 61: 41-51, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30034031

RESUMO

Social interactions form the basis of a broad range of functions related to survival and mating. The complexity of social behaviors and the flexibility required for normal social interactions make social behavior particularly susceptible to disruption. The consequences of developmental insults in the social domain and the associated neurobiological factors are commonly studied in rodents. Though methods for investigating social interactions in the laboratory are diverse, animals are typically placed together in an apparatus for a brief period (under 30 min) and allowed to interact freely while behavior is recorded for subsequent analysis. A standard approach to the analysis of social behavior involves quantification of the frequency and duration of individual social behaviors. This approach provides information about the allocation of time to particular behaviors within a session, which is typically sufficient for detection of robust alterations in behavior. Virtually all social species, however, display complex sequences of social behavior that are not captured in the quantification of individual behaviors. Sequences of behavior may provide more sensitive indicators of disruptions in social behavior. Sophisticated analysis systems for quantification of behavior sequences have been available for many years; however, the required training and time to complete these analyses represent significant barriers to high-throughput assessments. We present a simple approach to the quantification of behavioral sequences that requires minimal additional analytical steps after individual behaviors are coded. We implement this approach to identify altered social behavior in rats exposed to alcohol during prenatal development, and show that the frequency of several pairwise sequences of behavior discriminate controls from ethanol-exposed rats when the frequency of individual behaviors involved in those sequences does not. Thus, the approach described here may be useful in detecting subtle deficits in the social domain and identifying neural circuits involved in the organization of social behavior.

8.
Behav Brain Res ; 338: 76-87, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29037661

RESUMO

Usher syndrome, Type 1C (USH1C) is an autosomal recessive inherited disorder in which a mutation in the gene encoding harmonin is associated with multi-sensory deficits (i.e., auditory, vestibular, and visual). USH1C (Usher) mice, engineered with a human USH1C mutation, exhibit these multi-sensory deficits by circling behavior and lack of response to sound. Administration of an antisense oligonucleotide (ASO) therapeutic that corrects expression of the mutated USH1C gene, has been shown to increase harmonin levels, reduce circling behavior, and improve vestibular and auditory function. The current study evaluates the organization of exploratory movements to assess spatial organization in Usher mice and determine the efficacy of ASO therapy in attenuating any such deficits. Usher and heterozygous mice received the therapeutic ASO, ASO-29, or a control, non-specific ASO treatment at postnatal day five. Organization of exploratory movements was assessed under dark and light conditions at two and six-months of age. Disruptions in exploratory movement organization observed in control-treated Usher mice were consistent with impaired use of self-movement and environmental cues. In general, ASO-29 treatment rescued organization of exploratory movements at two and six-month testing points. These observations are consistent with ASO-29 rescuing processing of multiple sources of information and demonstrate the potential of ASO therapies to ameliorate topographical disorientation associated with other genetic disorders.


Assuntos
Proteínas de Transporte/genética , Comportamento Exploratório/efeitos dos fármacos , Movimento/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Síndromes de Usher/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Masculino , Camundongos , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
9.
Behav Brain Res ; 325(Pt A): 1-11, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28235587

RESUMO

The organization of rodent exploratory behavior appears to depend on self-movement cue processing. As of yet, however, no studies have directly examined the vestibular system's contribution to the organization of exploratory movement. The current study sequentially segmented open field behavior into progressions and stops in order to characterize differences in movement organization between control and otoconia-deficient tilted mice under conditions with and without access to visual cues. Under completely dark conditions, tilted mice exhibited similar distance traveled and stop times overall, but had significantly more circuitous progressions, larger changes in heading between progressions, and less stable clustering of home bases, relative to control mice. In light conditions, control and tilted mice were similar on all measures except for the change in heading between progressions. This pattern of results is consistent with otoconia-deficient tilted mice using visual cues to compensate for impaired self-movement cue processing. This work provides the first empirical evidence that signals from the otolithic organs mediate the organization of exploratory behavior, based on a novel assessment of spatial orientation.


Assuntos
Comportamento Exploratório , Membrana dos Otólitos/fisiologia , Animais , Sinais (Psicologia) , Feminino , Camundongos Endogâmicos C57BL , Navegação Espacial
10.
Behav Brain Res ; 320: 1-11, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888019

RESUMO

Moderate exposure to alcohol during development leads to subtle neurobiological and behavioral effects classified under the umbrella term fetal alcohol spectrum disorders (FASDs). Alterations in social behaviors are a frequently observed consequence of maternal drinking, as children with FASDs display inappropriate aggressive behaviors and altered responses to social cues. Rodent models of FASDs mimic the behavioral alterations seen in humans, with rats exposed to ethanol during development displaying increased aggressive behaviors, decreased social investigation, and altered play behavior. Work from our laboratory has observed increased wrestling behavior in adult male rats following prenatal alcohol exposure (PAE), and increased expression of GluN2B-containing NMDA receptors in the agranular insular cortex (AIC). This study was undertaken to determine if ifenprodil, a GluN2B preferring negative allosteric modulator, has a significant effect on social behaviors in PAE rats. Using a voluntary ethanol exposure paradigm, rat dams were allowed to drink a saccharin-sweetened solution of either 0% or 5% ethanol throughout gestation. Offspring at 6-8 months of age were implanted with cannulae into AIC. Animals were isolated for 24h before ifenprodil or vehicle was infused into AIC, and after 15min they were recorded in a social interaction chamber. Ifenprodil treatment altered aspects of wrestling, social investigatory behaviors, and ultrasonic vocalizations in rats exposed to ethanol during development that were not observed in control animals. These data indicate that GluN2B-containing NMDA receptors in AIC play a role in social behaviors and may underlie alterations in behavior and vocalizations observed in PAE animals.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Piperidinas/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Comportamento Social , Vocalização Animal/efeitos dos fármacos , Análise de Variância , Animais , Depressores do Sistema Nervoso Central/sangue , Depressores do Sistema Nervoso Central/toxicidade , Córtex Cerebral/fisiologia , Etanol/sangue , Etanol/toxicidade , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Long-Evans , Fatores Sexuais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...