Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36828455

RESUMO

The neurotoxin ß-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim of this research is to study the toxicity of BMAA (0.1-1 mM) on mitochondria and submitochondrial particles with ATPase activity, on the semicarbazide-sensitive amino oxidases (SSAOs) activity of rat liver, and on an in vitro model containing functionally active excitable tissues-regularly contracting heart muscle preparation with a preserved autonomic innervation. For the first time the BMAA-dependent inhibition of SSAO activity, the elimination of the positive inotropic effect of adrenergic innervation, and the direct and reversible inhibition of adrenaline signaling in ventricular myocytes with 1 mM BMAA were observed. Additionally, it is confirmed that 1 mM BMAA can activate mitochondrial ATPase indirectly. It is concluded that a higher dose of BMAA may influence multiple physiological and pathological processes as it slows down the degradation of biogenic amines, downregulates the sympathetic neuromediation, and embarrasses the cell signaling of adrenergic receptors.


Assuntos
Diamino Aminoácidos , Poliaminas , Animais , Ratos , Diamino Aminoácidos/toxicidade , Homeostase , Adenosina Trifosfatases , Neurotoxinas/toxicidade
2.
Toxins (Basel) ; 13(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429940

RESUMO

Cylindrospermopsin (CYN) is a widely spread cyanotoxin that can occur in fresh water and food. This research aims to investigate CYN toxicity by studying the effects of drinking 0.25 nM of CYN-contaminated water from a natural source, and of the direct application of moderate concentrations of CYN on different animal targets. The chosen structures and activities are rat mitochondria inner membrane permeability, mitochondrial ATP synthase (ATPase) and rat liver diamine oxidase (DAO) activities (EC 1.4.3.22.), the force of the contraction of an excised frog heart preparation with functional innervation, and the viability of a human intestinal epithelial cell line (HIEC-6). The oral exposure to CYN decreased the reverse (hydrolase) activity of rat liver ATPase whereas its short-term, in vitro application was without significant effect on this organelle, DAO activity, heart contractions, and their neuronal regulation. The application of CYN reduced HIEC-6 cells' viability dose dependently. It was concluded that CYN is moderately toxic for the human intestinal epithelial cells, where the regeneration of the epithelial layer can be suppressed by CYN. This result suggests that CYN may provoke pathological changes in the human gastrointestinal tract.


Assuntos
Alcaloides/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular , Toxinas de Cianobactérias , Contaminação de Alimentos , Coração/efeitos dos fármacos , Humanos , Mitocôndrias Hepáticas/efeitos dos fármacos , Ranidae , Ratos , Ratos Wistar , Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...