Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674493

RESUMO

Genetic enhancement of grain production and quality is a priority in wheat breeding projects. In this study, we assessed two key agronomic traits-grain protein content (GPC) and thousand kernel weight (TKW)-across 179 Bulgarian contemporary and historic varieties and landraces across three growing seasons. Significant phenotypic variation existed for both traits among genotypes and seasons, and no discernible difference was evident between the old and modern accessions. To understand the genetic basis of the traits, we conducted a genome-wide association study with MLM using phenotypic data from the crop seasons, best linear unbiased estimators, and genotypic data from the 25K Infinium iSelect array. As a result, we detected 16 quantitative trait nucleotides (QTNs) associated with GPC and 15 associated with TKW, all of which passed the false discovery rate threshold. Seven loci favorably influenced GPC, resulting in an increase of 1.4% to 8.1%, while four loci had a positive impact on TKW with increases ranging from 1.9% to 8.4%. While some loci confirmed previously published associations, four QTNs linked to GPC on chromosomes 2A, 7A, and 7B, as well as two QTNs related to TKW on chromosomes 1B and 6A, may represent novel associations. Annotations for proteins involved in the senescence-associated nutrient remobilization and in the following buildup of resources required for seed germination have been found for selected putative candidate genes. These include genes coding for storage proteins, cysteine proteases, cellulose-synthase, alpha-amylase, transcriptional regulators, and F-box and RWP-RK family proteins. Our findings highlight promising genomic regions for targeted breeding programs aimed at improving grain yield and protein content.

2.
Foods ; 12(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37048220

RESUMO

Grain protein content (GPC) is a key aspect of grain quality, a major determinant of the flour functional properties and grain nutritional value of bread wheat. Exploiting diverse germplasms to identify genes for improving crop performance and grain nutritional quality is needed to enhance food security. Here, we evaluated GPC in a panel of 255 Triticum aestivum L. accessions from 27 countries. GPC determined in seeds from three consecutive crop seasons varied from 8.6 to 16.4% (11.3% on average). Significant natural phenotypic variation in GPC among genotypes and seasons was detected. The population was evaluated for the presence of the trait-linked single nucleotide polymorphism (SNP) markers via a genome-wide association study (GWAS). GWAS analysis conducted with calculated best linear unbiased estimates (BLUEs) of phenotypic data and 90 K SNP array using the fixed and random model circulating probability unification (FarmCPU) model identified seven significant genomic regions harboring GPC-associated markers on chromosomes 1D, 3A, 3B, 3D, 4B and 5A, of which those on 3A and 3B shared associated SNPs with at least one crop season. The verified SNP-GPC associations provide new promising genomic signals on 3A (SNPs: Excalibur_c13709_2568 and wsnp_Ku_c7811_13387117) and 3B (SNP: BS00062734_51) underlying protein improvement in wheat. Based on the linkage disequilibrium for significant SNPs, the most relevant candidate genes within a 4 Mbp-window included genes encoding a subtilisin-like serine protease; amino acid transporters; transcription factors; proteins with post-translational regulatory functions; metabolic proteins involved in the starch, cellulose and fatty acid biosynthesis; protective and structural proteins, and proteins associated with metal ions transport or homeostasis. The availability of molecular markers within or adjacent to the sequences of the detected candidate genes might assist a breeding strategy based on functional markers to improve genetic gains for GPC and nutritional quality in wheat.

3.
Physiol Plant ; 171(2): 200-216, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32548914

RESUMO

Recent studies have demonstrated that exogenous polyamines have protective effects under various stress condition. A broader understanding of the role of the polyamine pool fine regulation and the alterations of polyamine-related physiological processes could be obtained by comparing the stress effects in different genotypes. In this study, the impact of pre-treatment with putrescine in response to osmotic stress was investigated in the drought-tolerant Katya and drought-sensitive Zora wheat (Triticum aestivum) cultivars. Photosynthetic performance, in vivo thermoluminescence emission from leaves, leaf temperature, polyamine and salicylic acid levels, contents of osmoprotectants, and activities of antioxidant enzymes in the leaves were investigated not only to reveal differences in the physiological processes associated to drought tolerance, but to highlight the modulating strategies of polyamine metabolism between a drought-tolerant and a drought-sensitive wheat genotype. Results showed that the tolerance of Katya under osmotic stress conditions was characterized by higher photosynthetic ability, stable charge separation across the thylakoid membrane in photosystem II, higher proline accumulation and antioxidant activity. Thermoluminescence also revealed differences between the two varieties - a downshift of the B band and an increase of the afterglow band under osmotic stress in Zora, providing original complementary information to leaf photosynthesis. Katya variety exhibited higher constitutive levels of the signaling molecules putrescine and salicylic acid compared to the sensitive Zora. However, responses to exogenous putrescine were more advantageous for the sensitive variety under PEG treatment, which may be in relation with the decreased catabolism of polyamines, suggesting the increased need for polyamine under stress conditions.


Assuntos
Secas , Triticum , Osmorregulação , Putrescina , Plântula , Estresse Fisiológico , Triticum/genética
4.
J Exp Bot ; 68(9): 2439-2451, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449129

RESUMO

Arundo donax has been identified as an important biomass and biofuel crop. Yet, there has been little research on photosynthetic and metabolic traits, which sustain the high productivity of A. donax under drought conditions. This study determined phenotypic differences between two A. donax ecotypes coming from stands with contrasting adaptation to dry climate. We hypothesized that the Bulgarian (BG) ecotype, adapted to drier conditions, exhibits greater drought tolerance than the Italian (IT) ecotype, adapted to a more mesic environment. Under well-watered conditions the BG ecotype was characterized by higher photosynthesis, mesophyll conductance, intrinsic water use efficiency, PSII efficiency, isoprene emission rate and carotenoids, whereas the IT ecotype showed higher levels of hydroxycinnamates. Photosynthesis of water-stressed plants was mainly limited by diffusional resistance to CO2 in BG, and by biochemistry in IT. Recovery of photosynthesis was more rapid and complete in BG than in IT, which may indicate better stability of the photosynthetic apparatus associated to enhanced induction of volatile and non-volatile isoprenoids and phenylpropanoid biosynthesis. This study shows that a large phenotypic plasticity among A. donax ecotypes exists, and may be exploited to compensate for the low genetic variability of this species when selecting plant productivity in constrained environments.


Assuntos
Adaptação Biológica , Secas , Ecótipo , Fotossíntese , Poaceae/fisiologia , Bulgária , Butadienos , Carotenoides/biossíntese , Hemiterpenos/biossíntese , Itália , Pentanos , Fenótipo , Poaceae/genética
5.
Plant Cell Environ ; 39(10): 2185-97, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27351898

RESUMO

Physiological, biochemical and morpho-anatomical traits that determine the phenotypic plasticity of plants under drought were tested in two Arundinoideae with contrasting habitats, growth traits and metabolism: the fast-growing Arundo donax, which also is a strong isoprene emitter, and the slow-growing Hakonechloa macra that does not invest on isoprene biosynthesis. In control conditions, A. donax displayed not only higher photosynthesis but also higher concentration of carotenoids and lower phenylpropanoid content than H. macra. In drought-stressed plants, photosynthesis was similarly inhibited in both species, but substantially recovered only in A. donax after rewatering. Decline of photochemical and biochemical parameters, increased concentration of CO2 inside leaves, and impairment of chloroplast ultrastructure were only observed in H. macra indicating damage of photosynthetic machinery under drought. It is suggested that volatile and non-volatile isoprenoids produced by A. donax efficiently preserve the chloroplasts from transient drought damage, while H. macra invests on phenylpropanoids that are less efficient in preserving photosynthesis but likely offer better antioxidant protection under prolonged stress.


Assuntos
Butadienos/metabolismo , Ácidos Cumáricos/metabolismo , Secas , Ecossistema , Hemiterpenos/metabolismo , Pentanos/metabolismo , Poaceae/metabolismo , Ácido Abscísico/metabolismo , Apigenina/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/ultraestrutura , Desidratação/metabolismo , Luteolina/metabolismo , Fotossíntese , Poaceae/crescimento & desenvolvimento , Poaceae/ultraestrutura , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...