Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 29(4): 1625-1638, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33515514

RESUMO

Ongoing clinical trials for treatment of beta-globinopathies by gene therapy involve the transfer of the beta-globin gene, which requires integration of three to four copies per genome in most target cells. This high proviral load may increase genome toxicity, potentially limiting the safety of this therapy and relegating its use to total body myeloablation. We hypothesized that introducing an additional hypersensitive site from the locus control region, the complete sequence of the second intron of the beta-globin gene, and the ankyrin insulator may enhance beta-globin expression. We identified a construct, ALS20, that synthesized significantly higher adult hemoglobin levels than those of other constructs currently used in clinical trials. These findings were confirmed in erythroblastic cell lines and in primary cells isolated from sickle cell disease patients. Bone marrow transplantation studies in beta-thalassemia mice revealed that ALS20 was curative at less than one copy per genome. Injection of human CD34+ cells transduced with ALS20 led to safe, long-term, and high polyclonal engraftment in xenograft experiments. Successful treatment of beta-globinopathies with ALS20 could potentially be achieved at less than two copies per genome, minimizing the risk of cytotoxic events and lowering the intensity of myeloablation.


Assuntos
Anemia Falciforme/genética , Transplante de Medula Óssea , Terapia Genética , Globinas beta/genética , Talassemia beta/genética , Anemia Falciforme/sangue , Anemia Falciforme/patologia , Anemia Falciforme/terapia , Animais , Expressão Gênica/genética , Vetores Genéticos/genética , Vetores Genéticos/farmacologia , Hemoglobinas/genética , Xenoenxertos , Humanos , Lentivirus/genética , Região de Controle de Locus Gênico/genética , Camundongos , Transdução Genética , Globinas beta/uso terapêutico , Talassemia beta/sangue , Talassemia beta/patologia , Talassemia beta/terapia
2.
Haematologica ; 106(5): 1433-1442, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32439726

RESUMO

ß-thalassemia is a disorder caused by altered hemoglobin protein synthesis and affects individuals worldwide. Severe forms of the disease, left untreated, can result in death before the age of 3 years (1). The standard of care consists of chronic and costly palliative treatment by blood transfusion combined with iron chelation. This dual approach suppresses anemia and reduces iron-related toxicities in patients. Allogeneic bone marrow transplant is an option, but limited by the availability of a highly compatible HSC donor. While gene therapy is been explored in several trials, its use is highly limited to developed regions with centers of excellence and well-established healthcare systems (2). Hence, there remains a tremendous unmet medical need to develop alternative treatment strategies for ß-thalassemia (3). Occurrence of aberrant splicing is one of the processes that affects ß-globin synthesis in ß-thalassemia. The (C>G) IVS-2-745 is a splicing mutation within intron 2 of the ß-globin gene. It leads to an aberrantly spliced mRNA that incorporates an intron fragment. This results in an in-frame premature termination codon that inhibits ß-globin production. Here, we propose the use of uniform 2'-O-methoxyethyl (2'-MOE) splice switching oligos (SSOs) to reverse this aberrant splicing in the pre-mRNA. With these lead SSOs we show aberrant to wild type splice switching. This switching leads to an increase of adult hemoglobin (HbA) up to 80% in erythroid cells from patients with the IVS-2-745 mutation. Furthermore, we demonstrate a restoration of the balance between ß-like- and α-globin chains, and up to an 87% reduction in toxic α-heme aggregates. While examining the potential benefit of 2'-MOE-SSOs in a mixed sickle-thalassemic phenotypic setting, we found reduced HbS synthesis and sickle cell formation due to HbA induction. In summary, 2'-MOE-SSOs are a promising therapy for forms of ß-thalassemia caused by mutations leading to aberrant splicing.

3.
Adv Exp Med Biol ; 1013: 155-176, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29127680

RESUMO

Beta-thalassemia and sickle cell anemia are two of the most common diseases related to the hemoglobin protein. In these diseases, the beta-globin gene is mutated, causing severe anemia and ineffective erythropoiesis. Patients can additionally present with a number of life-threatening co-morbidities, such as stroke or spontaneous fractures. Current treatment involves transfusion and iron chelation; allogeneic bone marrow transplant is the only curative option, but is limited by the availability of matching donors and graft-versus-host disease. As these two diseases are monogenic diseases, they make an attractive setting for gene therapy. Gene therapy aims to correct the mutated beta-globin gene or add back a functional copy of beta- or gamma-globin. Initial gene therapy work was done with oncoretroviral vectors, but has since shifted to lentiviral vectors. Currently, there are a few clinical trials underway to test the curative potential of some of these lentiviral vectors. This review will highlight the work done thus far, and present the challenges still facing gene therapy, such as genome toxicity concerns and achieving sufficient transgene expression to cure those with the most severe forms of thalassemia.


Assuntos
Anemia Falciforme/terapia , Transplante de Medula Óssea/métodos , Terapia Genética/métodos , Talassemia beta/terapia , Anemia Falciforme/genética , Transplante de Medula Óssea/efeitos adversos , Terapia Genética/tendências , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Mutação , Transplante Homólogo , Globinas beta/genética , Talassemia beta/genética
4.
Transl Res ; 161(4): 293-306, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23337292

RESUMO

Hemoglobinopathies are genetic inherited conditions that originate from the lack or malfunction of the hemoglobin (Hb) protein. Sickle cell disease (SCD) and thalassemia are the most common forms of these conditions. The severe anemia combined with complications that arise in the most affected patients raises the necessity for a cure to restore hemoglobin function. The current routine therapies for these conditions, namely transfusion and iron chelation, have significantly improved the quality of life in patients over the years, but still fail to address the underlying cause of the diseases. A curative option, allogeneic bone marrow transplantation is available, but limited by the availability of suitable donors and graft-vs-host disease. Gene therapy offers an alternative approach to cure patients with hemoglobinopathies and aims at the direct recovery of the hemoglobin function via globin gene transfer. In the last 2 decades, gene transfer tools based on lentiviral vector development have been significantly improved and proven curative in several animal models for SCD and thalassemia. As a result, clinical trials are in progress and 1 patient has been successfully treated with this approach. However, there are still frontiers to explore that might improve this approach: the stoichiometry between the transgenic hemoglobin and endogenous hemoglobin with respect to the different globin genetic mutations; donor cell sourcing, such as the use of induced pluripotent stem cells (iPSCs); and the use of safer gene insertion methods to prevent oncogenesis. With this review we will provide insights about (1) the different lentiviral gene therapy approaches in mouse models and human cells; (2) current and planned clinical trials; (3) hurdles to overcome for clinical trials, such as myeloablation toxicity, insertional oncogenesis, and high vector expression; and (4) future perspectives for gene therapy, including safe harbors and iPSCs technology.


Assuntos
Terapia Genética , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Hemoglobina Fetal/metabolismo , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...