Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3498-3507, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475002

RESUMO

This study compared the effects of Curcuma longa before and after processing with vinegar on the rat model of dysmenorrhea with the syndrome of liver depression and Qi stagnation to reveal the mechanism of vinegar processing in improving the role of C. longa in soothing liver and relieving pain. The rat model of dysmenorrhea with the syndrome of liver depression and Qi stagnation was established according to the Preparation of the Animal Model of Dysmenorrhea(Draft) and the chronic unpredictable stress me-thod. The changes in the body weight, organ indexes, writhing latency, writhing score, and serum levels of six liver function indicators, sex hormones, pain factors, and blood rheological indicators were measured to evaluate the efficacy of C. longa processed with vinegar or not in treating dysmenorrhea in the rats with syndrome of liver depression and qi stagnation. Compared with the model group, the C. longa group(processed with vinegar or not) showed slow weight loss, increase in writhing latency, and decrease in writhing response(P<0.05). The inhibition rates on writhing in raw C. longa, vinegar-processed C. longa, and positive groups were 33.780%, 64.611%, and 62.466%, respectively. The significantly higher inhibition rate of the vinegar processing group indicated that vinegar-processed C. longa demonstrated more significant therapeutic effect. The vinegar-processed C. longa group showed lower levels of alanine aminotransferase(ALT), alkaline phosphatase(ALP), aspartate aminotransferase(AST), direct bilirubin(DBIL), and total bilirubin(TBIL) and higher level of albumin(ALB)(P<0.05), which indicated that vinegar processing enhanced the therapeutic effect of C. longa on liver injury. The serum levels of estradiol(E_2) and oxytocin(OT) were lower in the vinegar-processed C. longa group(P<0.05), indicating that the vinegar-processed C. longa could regulate the sex hormone levels, reduce the activity of uterine smooth muscle and contraction of uterus, and alleviate the symptoms of dysmenorrhea in rats. Moreover, the vinegar-processed C. longa group showed lower interleukin-6(IL-6) and arginine vasopressin(AVP) levels and higher beta-endorphin(ß-EP) level(P<0.05), which indicated that vinegar-processed C. longa regulated the levels of pain factors to exert the pain-relieving effect. Drug intervention decreased the whole blood viscosity low-cut, medium-cut and high-cut values, plasma viscosity, whole blood reduction viscosity low-cut and high-cut values, erythrocyte cumulative pressure, and equation K value of erythrocyte sedimentation rate(P<0.05), and the vinegar-processed C. longa group outperformed other groups. This result indicated that vinegar processing enhanced the function of C. longa in improving the local blood rheology. C. longa processed with vinegar can enter the liver to relieve the da-mage to the heart, liver, kidney, and uterus, repair the liver function, and recover the sex hormone levels and immune function by regulating the levels of sex hormones and pain factors and improving the blood rheology. It activates the pain-relieving mechanism to relieve the pain, protect the liver, and fight inflammation, which is consistent with the theory that vinegar processing facilitates C. longa entering the liver to sooth liver and relieve pain.


Assuntos
Ácido Acético , Dismenorreia , Humanos , Feminino , Ratos , Animais , Dismenorreia/tratamento farmacológico , Curcuma , Depressão , Qi , Fígado , Hormônios Esteroides Gonadais , Bilirrubina
2.
Zhongguo Zhong Yao Za Zhi ; 48(3): 649-659, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872228

RESUMO

Liquid chromatography-mass spectrometry was employed to analyze the chemical components in Curcuma longa tuberous roots(HSYJ), C. longa tuberous roots processed with vinegar(CHSYJ), and rat serum after the administration. The active components of HSYJ and CHSYJ absorbed in serum were identified based on the secondary spectrum of database and literature. The targets of primary dysmenorrhea was screened out from database. The protein-protein interaction network analysis, gene ontology(GO) functional annotation, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed for the common targets shared by the drug active components in serum and primary dysmenorrhea, and the component-target-pathway network was constructed. AutoDock was used to conduct molecular docking between the core components and targets. A total of 44 chemical components were identified from HSYJ and CHSYJ, including 18 absorbed in serum. On the basis of network pharmacology, we identified 8 core components(including procurcumenol, isobutyl p-hydroxybenzoate, ferulic acid, and zedoarondiol) and 10 core targets \[including interleukin-6(IL-6), estrogen receptor 1(ESR1), and prostaglandin-endoperoxide synthase 2(PTGS2)\]. The core targets were mainly distributed in the heart, liver, uterus, and smooth muscle. The molecular docking results showed that the core components were well bound to the core targets, indicating that HSYJ and CHSYJ may exert therapeutic effect on primary dysmenorrhea via estrogen, ovarian steroidogenesis, tumor necrosis factor(TNF), hypoxia-inducible factor-1(HIF-1), IL-17 and other signaling pathways. This study clarifies the HSYJ and CHSYJ components absorbed in serum, as well as the corresponding mechanism, providing a reference for further elucidating the therapeutic material basis and clinical application of HSYJ and CHSYJ.


Assuntos
Ácido Acético , Curcuma , Feminino , Humanos , Animais , Ratos , Dismenorreia , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa , Ciclo-Oxigenase 2
3.
Dis Markers ; 2021: 2148820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659588

RESUMO

Parkinson's disease (PD) is a disease that involves brain damage and is associated with neuroinflammation, mitochondrial damage, and cell aging. However, the pathogenic mechanism of PD is still unknown. Sequencing data and proteomic data can describe the fluctuation of molecular abundance in diseases at the mRNA level and protein level, respectively. In order to explore new targets in the pathogenesis of PD, the study analyzed molecular changes from the database by combining transcriptomic and proteomic analysis. Differentially expressed genes and differentially abundant proteins were summarized and analyzed. Enrichment and cluster analysis emphasized the importance of neurotransmitter release, mitochondrial damage, and vesicle transport. The molecular network revealed a subnetwork of 9 molecules related to SCNA and TH and revealed hub gene with differential expression at both mRNA and protein levels. It found that ACHE and CADPS could be used as new targets in PD, emphasizing that impaired nerve signal transmission and vesicle transport affect the pathogenesis of PD. Our research emphasized that the joint analysis and verification of transcriptomics and proteomics were devoted to understanding the comprehensive views and mechanism of pathogenesis in PD.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas/genética , Proteínas/metabolismo , Substância Negra/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Análise por Conglomerados , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Doença de Parkinson/patologia , RNA Mensageiro/genética , Substância Negra/patologia , Transcriptoma , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Huan Jing Ke Xue ; 40(12): 5503-5514, 2019 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854623

RESUMO

Eutrophic aquaculture ponds are important methane (CH4) sources. In order to quantify CH4 emission characteristics and its influencing factors over aquaculture ponds, we conducted several intensive observations over two ponds located in Quanjiao County, Anhui Province, in 2018. The ebullition and diffusion flux of CH4 were measured in two seasons (winter and spring) using the inverted-funnel and bulk diffusion model, respectively. In winter, the CH4 ebullition flux during the daytime was higher than that at night (almost zero), whereas the diurnal pattern was found to be reversed in spring. Seasonally, the CH4 ebullition flux over the ponds was significantly lower in winter[3.92 mg·(m2·d)-1] than in spring[106.94 mg·(m2·d)-1], while the diffusion flux in winter[2.81 mg·(m2·d)-1] was slightly higher than in spring[0.87 mg·(m2·d)-1]. The CH4 ebullition and diffusion flux can be significantly controlled by natural factors such as water temperature and air pressure. It was revealed that the CH4ebullition flux in the studied ponds increased exponentially with increasing water temperature, and increased linearly with decreasing air pressure. Furthermore, we found that artificial management measures (i.e., winter drainage and spring manure treatment) could significantly enhance the CH4 ebullition flux rather than diffusion flux. For instance, the CH4 ebullition flux was found to increase with water depth decrease during the winter drainage period, while in the spring, the CH4 ebullition flux could reach as high as 1002.30 mg·(m2·d)-1 with chicken manure applicated. This study can provide data support for assessing the contribution of small ponds to the global carbon cycle.


Assuntos
Aquicultura , Metano , Lagoas , Dióxido de Carbono , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...