Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6632): eabo3627, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36538032

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.


Assuntos
COVID-19 , Citocinas , Endorribonucleases , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , COVID-19/imunologia , Citocinas/genética , Citocinas/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA de Cadeia Dupla , SARS-CoV-2/genética , Síndrome de Resposta Inflamatória Sistêmica/genética
2.
J Med Chem ; 65(2): 1445-1457, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34841869

RESUMO

The pseudokinase-endoribonuclease RNase L plays important roles in antiviral innate immunity and is also implicated in many other cellular activities. The inhibition of RNase L showed therapeutic potential for Aicardi-Goutières syndrome (AGS). Thus, RNase L is a promising drug target. In this study, using an enzyme assay and NMR screening, we discovered 13 inhibitory fragments against RNase L. Cocrystal structures of RNase L separately complexed with two different fragments were determined in which both fragments bound to the ATP-binding pocket of the pseudokinase domain. Myricetin, vitexin, and hyperoside, three natural products sharing similar scaffolds with the fragment AC40357, demonstrated a potent inhibitory activity in vitro. In addition, myricetin has a promising cellular inhibitory activity. A cocrystal structure of RNase L with myricetin provided a structural basis for inhibitor design by allosterically modulating the ribonuclease activity. Our findings demonstrate that fragment screening can lead to the discovery of natural product inhibitors of RNase L.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas , Endorribonucleases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos
3.
mBio ; 12(4): e0178121, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34372695

RESUMO

The 2',5'-oligoadenylate (2-5A)-dependent endoribonuclease, RNase L, is a principal mediator of the interferon (IFN) antiviral response. Therefore, the regulation of cellular levels of 2-5A is a key point of control in antiviral innate immunity. Cellular 2-5A levels are determined by IFN-inducible 2',5'-oligoadenylate synthetases (OASs) and by enzymes that degrade 2-5A. Importantly, many coronaviruses (CoVs) and rotaviruses encode 2-5A-degrading enzymes, thereby antagonizing RNase L and its antiviral effects. A-kinase-anchoring protein 7 (AKAP7), a mammalian counterpart, could possibly limit tissue damage from excessive or prolonged RNase L activation during viral infections or from self-double-stranded RNAs that activate OAS. We show that these enzymes, members of the two-histidine phosphoesterase (2H-PE) superfamily, constitute a subfamily referred here as 2',5'-PEs. 2',5'-PEs from the mouse CoV mouse hepatitis virus (MHV) (NS2), Middle East respiratory syndrome coronavirus (MERS-CoV) (NS4b), group A rotavirus (VP3), and mouse (AKAP7) were investigated for their evolutionary relationships and activities. While there was no activity against 3',5'-oligoribonucleotides, they all cleaved 2',5'-oligoadenylates efficiently but with variable activity against other 2',5'-oligonucleotides. The 2',5'-PEs are shown to be metal ion-independent enzymes that cleave trimer 2-5A (2',5'-p3A3) producing mono- or diadenylates with 2',3'-cyclic phosphate termini. Our results suggest that the elimination of 2-5A might be the sole function of viral 2',5'-PEs, thereby promoting viral escape from innate immunity by preventing or limiting the activation of RNase L. IMPORTANCE Viruses often encode accessory proteins that antagonize the host antiviral immune response. Here, we probed the evolutionary relationships and biochemical activities of two-histidine phosphoesterases (2H-PEs) that allow some coronaviruses and rotaviruses to counteract antiviral innate immunity. In addition, we investigated the mammalian enzyme AKAP7, which has homology and shared activities with the viral enzymes and might reduce self-injury. These viral and host enzymes, which we refer to as 2',5'-PEs, specifically degrade 2',5'-oligoadenylate activators of the antiviral enzyme RNase L. We show that the host and viral enzymes are metal ion independent and exclusively cleave 2',5'- and not 3',5'-phosphodiester bonds, producing cleavage products with cyclic 2',3'-phosphate termini. Our study defines 2',5'-PEs as enzymes that share characteristic conserved features with the 2H-PE superfamily but have specific and distinct biochemical cleavage activities. These findings may eventually lead to pharmacological strategies for developing antiviral drugs against coronaviruses, rotaviruses, and other viruses.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Nucleotídeos de Adenina/metabolismo , Endorribonucleases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Vírus da Hepatite Murina/enzimologia , Oligorribonucleotídeos/metabolismo , Rotavirus/enzimologia , Animais , Humanos , Imunidade Inata/imunologia , Interferons/imunologia , Camundongos
4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031250

RESUMO

Infection with the flavivirus Zika virus (ZIKV) can result in tissue tropism, disease outcome, and route of transmission distinct from those of other flaviviruses; therefore, we aimed to identify host machinery that exclusively promotes the ZIKV replication cycle, which can inform on differences at the organismal level. We previously reported that deletion of the host antiviral ribonuclease L (RNase L) protein decreases ZIKV production. Canonical RNase L catalytic activity typically restricts viral infection, including that of the flavivirus dengue virus (DENV), suggesting an unconventional, proviral RNase L function during ZIKV infection. In this study, we reveal that an inactive form of RNase L supports assembly of ZIKV replication factories (RFs) to enhance infectious virus production. Compared with the densely concentrated ZIKV RFs generated with RNase L present, deletion of RNase L induced broader subcellular distribution of ZIKV replication intermediate double-stranded RNA (dsRNA) and NS3 protease, two constituents of ZIKV RFs. An inactive form of RNase L was sufficient to contain ZIKV genome and dsRNA within a smaller RF area, which subsequently increased infectious ZIKV release from the cell. Inactive RNase L can interact with cytoskeleton, and flaviviruses remodel cytoskeleton to construct RFs. Thus, we used the microtubule-stabilization drug paclitaxel to demonstrate that ZIKV repurposes RNase L to facilitate the cytoskeleton rearrangements required for proper generation of RFs. During infection with flaviviruses DENV or West Nile Kunjin virus, inactive RNase L did not improve virus production, suggesting that a proviral RNase L role is not a general feature of all flavivirus infections.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno , Replicação Viral , Zika virus/fisiologia , 2',5'-Oligoadenilato Sintetase/genética , Células A549 , Endorribonucleases/genética , Humanos
5.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33811184

RESUMO

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection; induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung; and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, whereas PKR activation is evident in iAT2 and iCM. In SARS-CoV-2-infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however, activation of OAS-RNase L and PKR is observed. This is in contrast to Middle East respiratory syndrome (MERS)-CoV, which effectively inhibits IFN signaling and OAS-RNase L and PKR pathways, but is similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunidade Inata , Pulmão/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/virologia , RNA de Cadeia Dupla/metabolismo , SARS-CoV-2/imunologia , Células A549 , Endorribonucleases/metabolismo , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Nariz/virologia , Replicação Viral , eIF-2 Quinase
7.
bioRxiv ; 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32995797

RESUMO

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection, induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung, and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, while PKR activation is evident in iAT2 and iCM. In SARS-CoV-2 infected Calu-3 and A549 ACE2 lung-derived cell lines, IFN induction remains relatively weak; however activation of OAS-RNase L and PKR is observed. This is in contrast to MERS-CoV, which effectively inhibits IFN signaling as well as OAS-RNase L and PKR pathways, but similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, both OAS-RNase L and PKR are activated in MAVS knockout A549 ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549 ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2. SIGNIFICANCE: SARS-CoV-2 emergence in late 2019 led to the COVID-19 pandemic that has had devastating effects on human health and the economy. Early innate immune responses are essential for protection against virus invasion. While inadequate innate immune responses are associated with severe COVID-19 diseases, understanding of the interaction of SARS-CoV-2 with host antiviral pathways is minimal. We have characterized the innate immune response to SARS-CoV-2 infections in relevant respiratory tract derived cells and cardiomyocytes and found that SARS-CoV-2 activates two antiviral pathways, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR), while inducing minimal levels of interferon. This in contrast to MERS-CoV which inhibits all three pathways. Activation of these pathways may contribute to the distinctive pathogenesis of SARS-CoV-2.

8.
Proc Natl Acad Sci U S A ; 117(40): 24802-24812, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958664

RESUMO

The oligoadenylate synthetase (OAS)-RNase L system is an IFN-inducible antiviral pathway activated by viral infection. Viral double-stranded (ds) RNA activates OAS isoforms that synthesize the second messenger 2-5A, which binds and activates the pseudokinase-endoribonuclease RNase L. In cells, OAS activation is tamped down by ADAR1, an adenosine deaminase that destabilizes dsRNA. Mutation of ADAR1 is one cause of Aicardi-Goutières syndrome (AGS), an interferonopathy in children. ADAR1 deficiency in human cells can lead to RNase L activation and subsequent cell death. To evaluate RNase L as a possible therapeutic target for AGS, we sought to identify small-molecule inhibitors of RNase L. A 500-compound library of protein kinase inhibitors was screened for modulators of RNase L activity in vitro. We identified ellagic acid (EA) as a hit with 10-fold higher selectivity against RNase L compared with its nearest paralog, IRE1. SAR analysis identified valoneic acid dilactone (VAL) as a superior inhibitor of RNase L, with 100-fold selectivity over IRE1. Mechanism-of-action analysis indicated that EA and VAL do not bind to the pseudokinase domain of RNase L despite acting as ATP competitive inhibitors of the protein kinase CK2. VAL is nontoxic and functional in cells, although with a 1,000-fold decrease in potency, as measured by RNA cleavage activity in response to treatment with dsRNA activator or by rescue of cell lethality resulting from self dsRNA induced by ADAR1 deficiency. These studies lay the foundation for understanding novel modes of regulating RNase L function using small-molecule inhibitors and avenues of therapeutic potential.


Assuntos
Adenosina Desaminase/deficiência , Doenças Autoimunes do Sistema Nervoso/enzimologia , Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Malformações do Sistema Nervoso/enzimologia , Fenol/farmacologia , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Morte Celular/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inibidores Enzimáticos/química , Humanos , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/fisiopatologia , Oligorribonucleotídeos/metabolismo , Fenol/química , Proteínas de Ligação a RNA/genética
9.
EMBO J ; 39(11): e101573, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32323871

RESUMO

High expression of 2',5'-oligoadenylate synthetase 1 (OAS1), which adds AMP residues in 2',5' linkage to a variety of substrates, is observed in many cancers as a part of the interferon-related DNA damage resistance signature (IRDS). Poly(ADP-ribose) (PAR) is rapidly synthesized from NAD+ at sites of DNA damage to facilitate repair, but excessive PAR synthesis due to extensive DNA damage results in cell death by energy depletion and/or activation of PAR-dependent programmed cell death pathways. We find that OAS1 adds AMP residues in 2',5' linkage to PAR, inhibiting its synthesis in vitro and reducing its accumulation in cells. Increased OAS1 expression substantially improves cell viability following DNA-damaging treatments that stimulate PAR synthesis during DNA repair. We conclude that high expression of OAS1 in cancer cells promotes their ability to survive DNA damage by attenuating PAR synthesis and thus preventing cell death.


Assuntos
2',5'-Oligoadenilato Sintetase/biossíntese , Dano ao DNA , Regulação Enzimológica da Expressão Gênica , Poli ADP Ribosilação , 2',5'-Oligoadenilato Sintetase/genética , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Morte Celular , Linhagem Celular Transformada , Humanos
10.
mBio ; 10(6)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719180

RESUMO

Bats are reservoirs for many RNA viruses that are highly pathogenic in humans yet relatively apathogenic in the natural host. It has been suggested that differences in innate immunity are responsible. The antiviral OAS-RNase L pathway is well characterized in humans, but there is little known about its activation and antiviral activity in bats. During infection, OASs, upon sensing double-stranded RNA (dsRNA), produce 2'-5' oligoadenylates (2-5A), leading to activation of RNase L which degrades viral and host RNA, limiting viral replication. Humans encode three active OASs (OAS1 to -3). Analysis of the Egyptian Rousette bat genome combined with mRNA sequencing from bat RoNi/7 cells revealed three homologous OAS proteins. Interferon alpha treatment or viral infection induced all three OAS mRNAs, but RNase L mRNA is constitutively expressed. Sindbis virus (SINV) or vaccinia virus (VACVΔE3L) infection of wild-type (WT) or OAS1-KO (knockout), OAS2-KO, or MAVS-KO RoNi/7 cells, but not RNase L-KO or OAS3-KO cells, induces robust RNase L activation. SINV replication is 100- to 200-fold higher in the absence of RNase L or OAS3 than in WT cells. However, MAVS-KO had no detectable effect on RNA degradation or replication. Thus, in RoNi/7 bat cells, as in human cells, activation of RNase L during infection and its antiviral activity are dependent primarily on OAS3 while MAVS signaling is not required for the activation of RNase L and restriction of infection. Our findings indicate that OAS proteins serve as pattern recognition receptors (PRRs) to recognize viral dsRNA and that this pathway is a primary response to virus rather than a secondary effect of interferon signaling.IMPORTANCE Many RNA viruses that are highly pathogenic in humans are relatively apathogenic in their bat reservoirs, making it important to compare innate immune responses in bats to those well characterized in humans. One such antiviral response is the OAS-RNase L pathway. OASs, upon sensing dsRNA, produce 2-5A, leading to activation of RNase L which degrades viral and host RNA, limiting viral replication. Analysis of Egyptian Rousette bat sequences revealed three OAS genes expressing OAS1, OAS2, and OAS3 proteins. Interferon treatment or viral infection induces all three bat OAS mRNAs. In these bat cells as in human cells, RNase L activation and its antiviral activity are dependent primarily on OAS3 while MAVS signaling is not required. Importantly, our findings indicate the OAS-RNase L system is a primary response to virus rather than a secondary effect of interferon signaling and therefore can be activated early in infection or while interferon signaling is antagonized.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quirópteros/metabolismo , Endorribonucleases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biomarcadores , Catálise , Linhagem Celular , Egito , Expressão Gênica , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica
11.
Proc Natl Acad Sci U S A ; 116(11): 5071-5076, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30814222

RESUMO

Drugs that reverse epigenetic silencing, such as the DNA methyltransferase inhibitor (DNMTi) 5-azacytidine (AZA), have profound effects on transcription and tumor cell survival. AZA is an approved drug for myelodysplastic syndromes and acute myeloid leukemia, and is under investigation for different solid malignant tumors. AZA treatment generates self, double-stranded RNA (dsRNA), transcribed from hypomethylated repetitive elements. Self dsRNA accumulation in DNMTi-treated cells leads to type I IFN production and IFN-stimulated gene expression. Here we report that cell death in response to AZA treatment occurs through the 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway. OASs are IFN-induced enzymes that synthesize the RNase L activator 2-5A in response to dsRNA. Cells deficient in RNase L or OAS1 to 3 are highly resistant to AZA, as are wild-type cells treated with a small-molecule inhibitor of RNase L. A small-molecule inhibitor of c-Jun NH2-terminal kinases (JNKs) also antagonizes RNase L-dependent cell death in response to AZA, consistent with a role for JNK in RNase L-induced apoptosis. In contrast, the rates of AZA-induced and RNase L-dependent cell death were increased by transfection of 2-5A, by deficiencies in ADAR1 (which edits and destabilizes dsRNA), PDE12 or AKAP7 (which degrade 2-5A), or by ionizing radiation (which induces IFN-dependent signaling). Finally, OAS1 expression correlates with AZA sensitivity in the NCI-60 set of tumor cell lines, suggesting that the level of OAS1 can be a biomarker for predicting AZA sensitivity of tumor cells. These studies may eventually lead to pharmacologic strategies for regulating the antitumor activity and toxicity of AZA and related drugs.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Azacitidina/farmacologia , Desmetilação do DNA , Endorribonucleases/metabolismo , Imunidade Inata , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Morte Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Radiação Ionizante , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Elife ; 62017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28362255

RESUMO

ADAR1 isoforms are adenosine deaminases that edit and destabilize double-stranded RNA reducing its immunostimulatory activities. Mutation of ADAR1 leads to a severe neurodevelopmental and inflammatory disease of children, Aicardi-Goutiéres syndrome. In mice, Adar1 mutations are embryonic lethal but are rescued by mutation of the Mda5 or Mavs genes, which function in IFN induction. However, the specific IFN regulated proteins responsible for the pathogenic effects of ADAR1 mutation are unknown. We show that the cell-lethal phenotype of ADAR1 deletion in human lung adenocarcinoma A549 cells is rescued by CRISPR/Cas9 mutagenesis of the RNASEL gene or by expression of the RNase L antagonist, murine coronavirus NS2 accessory protein. Our result demonstrate that ablation of RNase L activity promotes survival of ADAR1 deficient cells even in the presence of MDA5 and MAVS, suggesting that the RNase L system is the primary sensor pathway for endogenous dsRNA that leads to cell death.


Assuntos
Adenosina Desaminase/deficiência , Morte Celular , Endorribonucleases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/fisiologia , Humanos , Helicase IFIH1 Induzida por Interferon/metabolismo , Proteínas de Ligação a RNA
13.
Proc Natl Acad Sci U S A ; 113(8): 2241-6, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858407

RESUMO

The 2',5'-oligoadenylate (2-5A) synthetase (OAS)-RNase L system is an IFN-induced antiviral pathway. RNase L activity depends on 2-5A, synthesized by OAS. Although all three enzymatically active OAS proteins in humans--OAS1, OAS2, and OAS3--synthesize 2-5A upon binding dsRNA, it is unclear which are responsible for RNase L activation during viral infection. We used clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) technology to engineer human A549-derived cell lines in which each of the OAS genes or RNase L is knocked out. Upon transfection with poly(rI):poly(rC), a synthetic surrogate for viral dsRNA, or infection with each of four viruses from different groups (West Nile virus, Sindbis virus, influenza virus, or vaccinia virus), OAS1-KO and OAS2-KO cells synthesized amounts of 2-5A similar to those synthesized in parental wild-type cells, causing RNase L activation as assessed by rRNA degradation. In contrast, OAS3-KO cells synthesized minimal 2-5A, and rRNA remained intact, similar to infected RNase L-KO cells. All four viruses replicated to higher titers in OAS3-KO or RNase L-KO A549 cells than in parental, OAS1-KO, or OAS2-KO cells, demonstrating the antiviral effects of OAS3. OAS3 displayed a higher affinity for dsRNA in intact cells than either OAS1 or OAS2, consistent with its dominant role in RNase L activation. Finally, the requirement for OAS3 as the major OAS isoform responsible for RNase L activation was not restricted to A549 cells, because OAS3-KO cells derived from two other human cell lines also were deficient in RNase L activation.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Endorribonucleases/metabolismo , Viroses/metabolismo , 2',5'-Oligoadenilato Sintetase/antagonistas & inibidores , 2',5'-Oligoadenilato Sintetase/genética , Infecções por Alphavirus/genética , Infecções por Alphavirus/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/genética , Ativação Enzimática , Técnicas de Inativação de Genes , Humanos , Influenza Humana/genética , Influenza Humana/metabolismo , Modelos Biológicos , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Sindbis virus , Vacínia/genética , Vacínia/metabolismo , Viroses/genética , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/metabolismo
14.
mBio ; 5(4): e01312-14, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24987090

RESUMO

Viral 2',5'-phosphodiesterases (2',5'-PDEs) help disparate RNA viruses evade the antiviral activity of interferon (IFN) by degrading 2',5'-oligoadenylate (2-5A) activators of RNase L. A kinase anchoring proteins (AKAPs) bind the regulatory subunits of protein kinase A (PKA) to localize and organize cyclic AMP (cAMP) signaling during diverse physiological processes. Among more than 43 AKAP isoforms, AKAP7 appears to be unique in its homology to viral 2',5'-PDEs. Here we show that mouse AKAP7 rapidly degrades 2-5A with kinetics similar to that of murine coronavirus (mouse hepatitis virus [MHV]) strain A59 ns2 and human rotavirus strain WA VP3 proteins. To determine whether AKAP7 could substitute for a viral 2',5'-PDE, we inserted AKAP7 cDNA into an MHV genome with an inactivated ns2 gene. The AKAP7 PDE domain or N-terminally truncated AKAP7 (both lacking a nuclear localization motif), but not full-length AKAP7 or a mutant, AKAP7(H185R), PDE domain restored the infectivity of ns2 mutant MHV in bone marrow macrophages and in livers of infected mice. Interestingly, the AKAP7 PDE domain and N-terminally deleted AKAP7 were present in the cytoplasm (the site of MHV replication), whereas full-length AKAP7 was observed only in nuclei. We suggest the possibility that viral acquisition of the host AKAP7 PDE domain might have occurred during evolution, allowing diverse RNA viruses to antagonize the RNase L pathway. Importance: Early virus-host interactions determine whether an infection is established, highlighting the need to understand fundamental mechanisms regulating viral pathogenesis. Recently, our laboratories reported a novel mode of regulation of the IFN antiviral response. We showed that the coronavirus MHV accessory protein ns2 antagonizes the type I IFN response, promoting viral replication and hepatitis. ns2 confers virulence by cleaving 2',5'-oligoadenylate (2-5A) activators of RNase L in macrophages. We also reported that the rotavirus VP3 C-terminal domain (VP3-CTD) cleaves 2-5A and that it may rescue ns2 mutant MHV. Here we report that a cellular protein, AKAP7, has an analogous 2',5'-phosphodiesterase (2',5'-PDE) domain that is able to restore the growth of chimeric MHV expressing inactive ns2. The proviral effect requires cytoplasmic localization of the AKAP7 PDE domain. We speculate that AKAP7 is the ancestral precursor of viral proteins, such as ns2 and VP3, that degrade 2-5A to evade the antiviral activity of RNase L.


Assuntos
Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/metabolismo , Coronavirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Western Blotting , Linhagem Celular , Coronavirus/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas não Estruturais Virais/genética
15.
Mol Cell ; 53(2): 221-34, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24462203

RESUMO

RNase L is an ankyrin repeat domain-containing dual endoribonuclease-pseudokinase that is activated by unusual 2,'5'-oligoadenylate (2-5A) second messengers and which impedes viral infections in higher vertebrates. Despite its importance in interferon-regulated antiviral innate immunity, relatively little is known about its precise mechanism of action. Here we present a functional characterization of 2.5 Å and 3.25 Å X-ray crystal and small-angle X-ray scattering structures of RNase L bound to a natural 2-5A activator with and without ADP or the nonhydrolysable ATP mimetic AMP-PNP. These studies reveal how recognition of 2-5A through interactions with the ankyrin repeat domain and the pseudokinase domain, together with nucleotide binding, imposes a rigid intertwined dimer configuration that is essential for RNase catalytic and antiviral functions. The involvement of the pseudokinase domain of RNase L in 2-5A sensing, nucleotide binding, dimerization, and ribonuclease functions highlights the evolutionary adaptability of the eukaryotic protein kinase fold.


Assuntos
Nucleotídeos de Adenina/química , Endorribonucleases/química , Oligorribonucleotídeos/química , Difosfato de Adenosina/química , Adenilil Imidodifosfato/química , Animais , Repetição de Anquirina , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Vírus da Encefalomiocardite , Endorribonucleases/genética , Endorribonucleases/fisiologia , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Picornaviridae , Estrutura Terciária de Proteína , Espalhamento de Radiação , Relação Estrutura-Atividade , Sus scrofa
16.
Nucleic Acids Res ; 42(6): 3803-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371271

RESUMO

Retrotransposons are mobile genetic elements, and their mobility can lead to genomic instability. Retrotransposon insertions are associated with a diverse range of sporadic diseases, including cancer. Thus, it is not a surprise that multiple host defense mechanisms suppress retrotransposition. The 2',5'-oligoadenylate (2-5A) synthetase (OAS)-RNase L system is a mechanism for restricting viral infections during the interferon antiviral response. Here, we investigated a potential role for the OAS-RNase L system in the restriction of retrotransposons. Expression of wild type (WT) and a constitutively active form of RNase L (NΔ385), but not a catalytically inactive RNase L mutant (R667A), impaired the mobility of engineered human LINE-1 (L1) and mouse intracisternal A-type particle retrotransposons in cultured human cells. Furthermore, WT RNase L, but not an inactive RNase L mutant (R667A), reduced L1 RNA levels and subsequent expression of the L1-encoded proteins (ORF1p and ORF2p). Consistently, confocal immunofluorescent microscopy demonstrated that WT RNase L, but not RNase L R667A, prevented formation of L1 cytoplasmic foci. Finally, siRNA-mediated depletion of endogenous RNase L in a human ovarian cancer cell line (Hey1b) increased the levels of L1 retrotransposition by ∼2-fold. Together, these data suggest that RNase L might function as a suppressor of structurally distinct retrotransposons.


Assuntos
Endorribonucleases/metabolismo , Genes de Partícula A Intracisternal , Elementos Nucleotídeos Longos e Dispersos , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , RNA Mensageiro/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(32): 13114-9, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878220

RESUMO

Efficient and productive virus infection often requires viral countermeasures that block innate immunity. The IFN-inducible 2',5'-oligoadenylate (2-5A) synthetases (OASs) and ribonuclease (RNase) L are components of a potent host antiviral pathway. We previously showed that murine coronavirus (MHV) accessory protein ns2, a 2H phosphoesterase superfamily member, is a phosphodiesterase (PDE) that cleaves 2-5A, thereby preventing activation of RNase L. The PDE activity of ns2 is required for MHV replication in macrophages and for hepatitis. Here, we show that group A rotavirus (RVA), an important cause of acute gastroenteritis in children worldwide, encodes a similar PDE. The RVA PDE forms the carboxy-terminal domain of the minor core protein VP3 (VP3-CTD) and shares sequence and predicted structural homology with ns2, including two catalytic HxT/S motifs. Bacterially expressed VP3-CTD exhibited 2',5'-PDE activity, which cleaved 2-5A in vitro. In addition, VP3-CTD expressed transiently in mammalian cells depleted 2-5A levels induced by OAS activation with poly(rI):poly(rC), preventing RNase L activation. In the context of recombinant chimeric MHV expressing inactive ns2, VP3-CTD restored the ability of the virus to replicate efficiently in macrophages or in the livers of infected mice, whereas mutant viruses expressing inactive VP3-CTD (H718A or H798R) were attenuated. In addition, chimeric viruses expressing either active ns2 or VP3-CTD, but not nonfunctional equivalents, were able to protect ribosomal RNA from RNase L-mediated degradation. Thus, VP3-CTD is a 2',5'-PDE able to functionally substitute for ns2 in MHV infection. Remarkably, therefore, two disparate RNA viruses encode proteins with homologous 2',5'-PDEs that antagonize activation of innate immunity.


Assuntos
Imunidade Inata/imunologia , Diester Fosfórico Hidrolases/imunologia , Vírus de RNA/imunologia , Proteínas não Estruturais Virais/imunologia , 2',5'-Oligoadenilato Sintetase/imunologia , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Células Cultivadas , Endorribonucleases/genética , Endorribonucleases/imunologia , Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Immunoblotting , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Vírus da Hepatite Murina/imunologia , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/fisiologia , Mutação , Oligorribonucleotídeos/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/metabolismo , Vírus de RNA/fisiologia , Rotavirus/imunologia , Rotavirus/metabolismo , Rotavirus/fisiologia , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
18.
Mol Ther ; 21(9): 1749-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23732991

RESUMO

The use of lytic viruses to preferentially infect and eliminate cancer cells while sparing normal cells is a promising experimental therapeutic approach for treating cancer. However, the efficacy of oncolytic virotherapy is often limited by two innate immunity pathways, the protein kinase PKR and the 2'-5'-oligoadenylate (OAS)/RNase L systems, which are widely present in many but not all tumor cell types. Previously, we reported that the anticancer drug, sunitinib, an inhibitor of VEGF-R and PDGF-R, has off-target effects against both PKR and RNase L. Here we show that combining sunitinib treatments with infection by an oncolytic virus, vesicular stomatitis virus (VSV), led to the elimination of prostate, breast, and kidney malignant tumors in mice. In contrast, either virus or sunitinib alone slowed tumor progression but did not eliminate tumors. In prostate tumors excised from treated mice, sunitinib decreased levels of the phosphorylated form of translation initiation factor, eIF2-α, a substrate of PKR, by 10-fold while increasing median viral titers by 23-fold. The sunitinib/VSV regimen caused complete and sustained tumor regression in both immunodeficient and immunocompetent animals. Results indicate that transient inhibition of innate immunity with sunitinib enhances oncolytic virotherapy allowing the recovery of tumor-bearing animals.


Assuntos
Antineoplásicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Indóis/farmacologia , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Pirróis/farmacologia , Vesiculovirus/fisiologia , Animais , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Linhagem Celular Tumoral , Terapia Combinada , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Feminino , Indóis/administração & dosagem , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Masculino , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Pirróis/administração & dosagem , Sunitinibe , Vesiculovirus/genética , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo
19.
Virology ; 421(1): 28-33, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-21982221

RESUMO

The gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), replicates to high titers in some human cell lines and is able to infect non-human primates. To determine whether APOBEC3 (A3) proteins restrict XMRV infections in a non-human primate model, we sequenced proviral DNA from peripheral blood mononuclear cells of XMRV-infected rhesus macaques. Hypermutation characteristic of A3DE, A3F and A3G activities was observed in the XMRV proviral sequences in vivo. Furthermore, expression of rhesus A3DE, A3F, or A3G in human cells inhibited XMRV infection and caused hypermutation of XMRV DNA. These studies show that some rhesus A3 isoforms are highly effective against XMRV in the blood of a non-human primate model of infection and in cultured human cells.


Assuntos
Citosina Desaminase/metabolismo , DNA Viral/genética , Leucócitos Mononucleares/virologia , Mutação , Infecções por Retroviridae/virologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética , Animais , Sequência de Bases , Linhagem Celular , Citosina Desaminase/genética , DNA Viral/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Leucócitos Mononucleares/enzimologia , Macaca mulatta , Masculino , Dados de Sequência Molecular , Infecções por Retroviridae/enzimologia , Replicação Viral , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/fisiologia
20.
J Biol Chem ; 286(30): 26319-26, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21636578

RESUMO

RNase L and RNA-dependent protein kinase (PKR) are effectors of the interferon antiviral response that share homology in their pseudokinase and protein kinase domains, respectively. Sunitinib is an orally available, ATP-competitive inhibitor of VEGF and PDGF receptors used clinically to suppress angiogenesis and tumor growth. Sunitinib also impacts IRE1, an endoplasmic reticulum protein involved in the unfolded protein response that is closely related to RNase L. Here, we report that sunitinib is a potent inhibitor of both RNase L and PKR with IC(50) values of 1.4 and 0.3 µM, respectively. In addition, flavonol activators of IRE1 inhibited RNase L. Sunitinib treatment of wild type (WT) mouse embryonic fibroblasts resulted in about a 12-fold increase in encephalomyocarditis virus titers. However, sunitinib had no effect on encephalomyocarditis virus growth in cells lacking both PKR and RNase L. Furthermore, oral delivery of sunitinib in WT mice resulted in 10-fold higher viral titers in heart tissues while suppressing by about 2-fold the IFN-ß levels. In contrast, sunitinib had no effect on viral titers in mice deficient in both RNase L and PKR. Also, sunitinib reduced mean survival times from 12 to 6 days in virus-infected WT mice while having no effect on survival of mice lacking both RNase L and PKR. Results indicate that sunitinib treatments prevent antiviral innate immune responses mediated by RNase L and PKR.


Assuntos
Antineoplásicos/farmacologia , Infecções por Cardiovirus/imunologia , Endorribonucleases/antagonistas & inibidores , Imunidade Inata/efeitos dos fármacos , Indóis/farmacologia , Proteínas de Membrana/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Pirróis/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Animais , Infecções por Cardiovirus/enzimologia , Infecções por Cardiovirus/genética , Vírus da Encefalomiocardite , Endorribonucleases/genética , Endorribonucleases/imunologia , Endorribonucleases/metabolismo , Humanos , Imunidade Inata/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Sunitinibe , eIF-2 Quinase/genética , eIF-2 Quinase/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...