Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 24(6): 738, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36478884

RESUMO

Prenylated rab acceptor 1 domain family member 2 (PRAF2) acts as an oncogene and is closely related to the occurrence and development of various tumors. The present study aimed to clarify the functional relevance of PRAF2 in the biological behaviors of breast cancer by determining the expression of PRAF2 in breast cancer tissues and the corresponding adjacent tissues. The gene phenotypes of PRAF2 in patients with breast cancer in The Cancer Genome Atlas database were predicted using a cancer data online analysis website: The University of Alabama at Birmingham Cancer Data Analaysis Portal (UALCAN). The mRNA and protein expression of PRAF2 was further examined in 37 pairs of fresh frozen breast cancer tissues and adjacent non-tumor tissues by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. High expression of PRAF2 was verified by RT-qPCR in the breast cancer cell line, MCF-7, and small interfering RNA (siRNA) technology was used to silence PRAF2. In the in vitro cell functional experiment, three groups were used: Negative control (NC) group, siRNA-NC group and siRNA-PRAF2 group. Cell Counting Kit-8 (CCK-8) and colony formation assays were conducted to analyze the effect of downregulation of PRAF2 on the proliferation of breast cancer cells. Transwell invasion and cell scratch assays were performed to examine the effect of downregulation of PRAF2 on the invasion and migration of breast cancer cells. UALCAN analysis results indicated that PRAF2 expression was upregulated in breast cancer compared with normal tissue samples (P<0.001). High expression of PRAF2 in breast cancer was associated with TNM stage and regional lymph node metastasis. RT-qPCR results showed increased mRNA expression of PRAF2 in clinical tissue samples from 37 patients with breast cancer, compared with normal adjacent tissues (P<0.001). Protein expression of PRAF2 was also shown to be higher in the breast cancer MCF-7 cells than in the MDA-MB-231 cells. Western blotting analysis combined with ImageJ software quantification showed that the relative expression of PRAF2 protein was significantly higher in clinical tissue samples from 37 patients with breast cancer (1.9750±0.0103) than that in normal adjacent tissues (0.9818±0.0140) (P<0.001). Western blotting analysis results indicated that transfection with siRNA PRAF2 in MCF-7 cells decreased PRAF2 expression (P<0.001). The results of CCK-8 and colony formation assays revealed that downregulation of PRAF2 expression suppressed the proliferation of MCF-7 cells (P<0.05 and P<0.001, respectively). In addition, Transwell invasion and cell scratch assay results showed that downregulation of PRAF2 expression in MCF-7 cells repressed invasion and migration of cancer cells (P<0.001). Overall, PRAF2 expression was significantly higher in breast cancer tissues than normal adjacent tissues, and was closely related to TNM stage and regional lymph node metastasis in breast cancer. PRAF2 was found to act as an oncogene that is able to promote breast cancer cell proliferation and invasion. Thus, PRAF2 may be a potential prognostic factor in patients with breast cancer and a potential target for the treatment of breast cancer metastasis.

2.
World J Surg Oncol ; 20(1): 357, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352391

RESUMO

OBJECTIVE: To evaluate the feasibility and accuracy of near-infrared fluorescence imaging technology for assessing margins during breast-conserving surgery for breast cancer. METHODS: Forty-three breast cancer patients who received surgical treatment at Yijishan Hospital of Wannan Medical College were selected. Before the operation, the patients were administered with an indocyanine green injection of 0.5 mg/kg intravenously 2 h before operation. During and after the operation, all patients underwent surgical margin monitoring with the near-infrared fluorescence imaging system for fluorescence imaging and acquisition of images and quantitative fluorescence intensity. During the operation, the patients' tissue specimens were collected on the upper, lower, inner, outer, apical, and basal sides of the fluorescence boundary of the isolated lesions for pathological examination. RESULTS: Fluorescence was detected in the primary tumor in all patients. The average fluorescence intensities of tumor tissue, peritumoral tissue, and normal tissue were 219.41 ± 32.81, 143.35 ± 17.37, and 105.77 ± 17.79 arbitrary units, respectively (P < 0.05, t test). The signal-to-background ratio of tumor to peritumor tissue and normal tissue was 1.54 ± 0.20 and 2.14 ± 0.60, respectively (P < 0.05, t test). Abnormal indocyanine green fluorescence was detected in 11.6% patients (5/43), including 3 patients with residual infiltrating carcinoma and 2 patients with adenosis with ductal dilatation. CONCLUSION: This study confirms the high sensitivity and specificity of near-infrared fluorescence imaging technology for breast-conserving surgery margin assessment. Near-infrared fluorescence imaging technology can be used as an intraoperative diagnosis and treatment tool to accurately determine the surgical margin and is of important guiding value in breast-conserving surgery for breast cancer.


Assuntos
Neoplasias da Mama , Mastectomia Segmentar , Humanos , Feminino , Mastectomia Segmentar/métodos , Margens de Excisão , Verde de Indocianina , Imagem Óptica/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Neoplasia Residual/cirurgia
3.
Front Oncol ; 12: 865121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433455

RESUMO

Background: Growing evidence supports the modulatory role of human gut microbiome on neoadjuvant chemotherapy (NAC) efficacy. However, the relationships among the gut microbiome, tumor-infiltrating lymphocytes (TILs), and NAC response for breast cancer (BC) patients remain unclear. We thus proposed this preliminary study to investigate the relationship between gut microbiome and BC patients' responses to NAC treatment as well as underlying mechanisms. Methods: Prior to receiving NAC, the fecal metagenome collected from 23 patients with invasive BC was analyzed. Patients were subsequently assigned to the NAC non-effectual group and the NAC effectual group based on their response to NAC. The peripheral T lymphocyte subset counts were examined by flow cytometry methods. CellMinor analysis was employed to explore the relationship between CD4 mRNA expression and the reaction of tumor cells to NAC drugs. Results: The gut microbiomes of the NAC non-effectual group showed characteristics of low diversity with low abundances, distinct metagenomic composition with decreased butyrate-producing and indolepropionic acid-producing bacteria, and increased potential pathobionts compared with the NAC effectual group. The combination of Coprococcus, Dorea, and uncultured Ruminococcus sp. serves as signature bacteria for distinguishing NAC non-effectual group patients from the NAC effectual group. The absolute numbers of CD4+ and CD8+ TIL infiltration in tumors in the NAC non-effectual group were significantly lower than those in the effectual group. Similar findings were reported for the CD4+ T lymphocytes in the peripheral blood (p's < 0.05). NAC effectual-related signature bacteria were proportional to these patients' CD4+ T lymphocyte counts in peripheral blood and tumors (p's < 0.05). CellMinor analysis showed that the CD4 mRNA expression level dramatically climbed with increased sensitivity of tumor cells to NAC drugs such as cyclophosphamide, cisplatin, and carboplatin (p's < 0.05). Conclusions: The composition of the gut microbial community differs between BC patients for whom NAC is effective to those that are treatment resistant. The modulation of the gut microbiota on host CD4+ T lymphocytes may be one critical mechanism underlying chemosensitivity and NAC pathologic response. Taken together, gut microbiota may serve as a potential biomarker for NAC response, which sheds light on novel intervention targets in the treatment of NAC non-effectual BC patients.

4.
Onco Targets Ther ; 9: 1123-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042104

RESUMO

It has been previously reported that the deregulation of microRNAs in gastric cancer (GC) was correlated with the progression and prognosis. miR-429, a member of the miR-200 family, was previously shown to play an important role in human carcinomas. Our study shows that miR-429 is significantly downregulated in GC tissues compared with matched nontumor tissues. Overexpression of miR-429 in GC cells suppressed cell proliferation. Fascin-1 (FSCN1) was identified as one of the targets of miR-429 and knockdown of FSCN1 mimics the function of miR-429 overexpression. In conclusion, miR-429 acts as a tumor suppressor by targeting FSCN1, suggesting that miR-429 and FSCN1 can both be potential therapeutic targets of GC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...