Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905206

RESUMO

Quantum dots (QDs) exhibit superior brightness and photochemical stability, making them the preferred option for highly sensitive single-molecule detection compared with fluorescent dyes or proteins. Nevertheless, their high surface energy leads to nonspecific adsorption and poor colloidal stability. In the past decades, we have found that QD-based fluorescent nanoparticles (FNs) can not only address these limitations but also enhance detection sensitivity. However, the photoluminescence quantum yield (PLQY) of FNs is significantly lower compared with that of original QDs. It is urgent to develop a strategy to solve the issue, aiming to further enhance detection sensitivity. In this study, we found that the decrease of PLQY of FNs prepared by free radical polymerization was attributed to two factors: (1) generation of defects that can cause nonradiative transitions resulting from QD-ligands desorption and QD-shell oxidation induced by free radicals; (2) self-absorption resulting from aggregation caused by incompatibility of QDs with polymers. Based on these, we proposed a multihierarchical regulation strategy that includes: (1) regulating QD-ligands; (2) precisely controlling free radical concentration; and (3) constructing cross-linked structures of polymer to improve compatibility and to reduce the formation of surface defects. It is crucial to emphasize that the simultaneous coordination of multiple factors is essential. Consequently, a world-record PLQY of 97.6% for FNs was achieved, breaking through the current bottleneck at 65%. The flexible application of this regulatory concept paves the way for the large-scale production of high-brightness QD-polymer complexes, enhancing their potential applications in sensitive biomedical detection.

2.
Crit Rev Biotechnol ; 43(1): 22-37, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35282729

RESUMO

Nanotechnology is a promising means for development of sustainable agriculture while the study of nanoparticle-mediated plant disease resistance is still in its primary stage. Nanotechnology has shown great promise in regulating: the content of secondary metabolites, inducing disease resistance genes, delivering hormones, delivering biomolecules (such as: nucleotides, proteins, and activators), and obtaining transgenic plants to resist plant diseases. In this review, we conclude its versatility and applicability in disease management strategies and diagnostics and as molecular tools. With the advent of new biotechnologies (e.g. de novo regeneration, CRISPR/Cas9, and GRF4-GIF1 fusion protein), we discuss the potential of nanoparticles as an optimal platform to deliver biomolecules to plants for genetic engineering. In order to ensure the safe use and social acceptance of plant nanoparticle technology, its adverse effects are discussed, including the risk of transferring nanoparticles through the food chain.


Assuntos
Edição de Genes , Nanopartículas , Resistência à Doença/genética , Plantas Geneticamente Modificadas/genética , Doenças das Plantas/prevenção & controle , Sistemas CRISPR-Cas , Genoma de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...