Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 16(7): 5107-17, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18542610

RESUMO

Large-area multiphoton laser scanning microscopy (LMLSM) can be applied in biology and medicine for high sensitivity and resolution tissue imaging. However, factors such as refractive index mismatch induced spherical aberration, emission/excitation absorption and scattering can result in axial intensity attenuation and lateral image heterogeneity, affecting both qualitative and quantitative image analysis. In this work, we describe an image correction algorithm to improve three-dimensional images in LMLSM. The method consists of multiplying the measured nonlinear signal by a three-dimensional correction factor, determined by the use of twophoton images of the appropriate specimens and specimen absorption and scattering properties at the excitation and emission wavelengths. The proposed methodology is demonstrated in correcting multiphoton images of objects imbedded in uniform fluorescent background, lung tissue, and Drosophila larva.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos
3.
Biophys J ; 82(4): 2211-23, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11916876

RESUMO

The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses.


Assuntos
Microscopia/instrumentação , Microscopia/métodos , Células 3T3 , Animais , Calibragem , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Magnetismo , Camundongos , Músculo Liso/metabolismo , Fótons , Proteínas Recombinantes de Fusão/metabolismo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...