Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(12): e2109213, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995395

RESUMO

The major hurdle in glioblastoma therapy is the low efficacy of drugs crossing the blood-brain barrier (BBB). Neisseria meningitidis is known to specifically enrich in the central nervous system through the guidance of an outer membrane invasion protein named Opca. Here, by loading a chemotherapeutic drug methotrexate (MTX) in hollow manganese dioxide (MnO2 ) nanoparticles with surface modification of the Opca protein of Neisseria meningitidis, a bionic nanotherapeutic system (MTX@MnO2 -Opca) is demonstrated to effectively overcome the BBB. The presence of the Opca protein enables the drug to cross the BBB and penetrate into tumor tissues. After accumulating in glioblastoma, the nanotherapeutic system catalyzes the decomposition of excess H2 O2 in the tumor tissue and thereby generates O2 , which alleviates tumor hypoxia and enhances the effect of chemotherapy in the treatment of glioblastoma. This bionic nanotherapeutic system may exhibit great potential in the treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Neisseria meningitidis , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Compostos de Manganês , Óxidos/farmacologia
2.
Small ; 17(5): e2006582, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33382206

RESUMO

Glioblastoma is the most common lethal malignant intracranial tumor with a low 5-year survival rate. Currently, the maximal safe surgical resection, followed by high-dose radiotherapy (RT), is a standard treatment for glioblastoma. However, high-dose radiation to the brain is associated with brain injury and results in a high fatality rate. Here, integrated pharmaceutics (named D-iGSNPs) composed of gold sub-nanometer particles (GSNPs), blood-brain barrier (BBB) penetration peptide iRGD, and cell cycle regulator α-difluoromethylornithine is designed. In both simulated BBB and orthotopic murine GL261 glioblastoma models, D-iGSNPs are proved to have a beneficial effect on the BBB penetration and tumor targeting. Meanwhile, data from cell and animal experiments reveal that D-iGSNPs are able to sensitize RT. More importantly, the synergy of D-iGSNPs with low-dose RT can exhibit an almost equal therapeutic effect with that of high-dose RT. This study demonstrates the therapeutic advantages of D-iGSNPs in boosting RT, and may provide a facile approach to update the current treatment of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Barreira Hematoencefálica , Encéfalo , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Glioblastoma/radioterapia , Ouro , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...