Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 275: 116572, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861809

RESUMO

The development of effective drugs for cervical cancer is urgently required because of its high mortality rate and the limited treatment options. Herein, we report the design, synthesis, and evaluation of a series of novel and effective Hsp90-targeting PROTACs. These compounds exhibited potent anti-proliferative activity against cervical cancer cells with low IC50 values. Compound lw13 effectively degraded Hsp90 at a concentration of only 0.05 µM. In addition, it can inhibit the metastasis of cancer cells and induce significant cell cycle arrest and apoptosis. Furthermore, lw13 demonstrated remarkable antitumor activity both in vitro and in vivo, and has a synergistic effect in combination with cisplatin. Moreover, lw13 can prevent the activation of the HER2/AKT/mTOR signaling pathway by indirectly reducing the levels of HER2 and AKT. This study paves the way for cancer treatment and provides valuable insights into the combination therapy of cervical cancer.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Cisplatino , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90 , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Cisplatino/farmacologia , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Animais , Linhagem Celular Tumoral , Camundongos , Quimera de Direcionamento de Proteólise
2.
J Med Chem ; 67(11): 8913-8931, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38809993

RESUMO

Estrogen receptor α (ERα) plays a pivotal role in the proliferation, differentiation, and migration of breast cancer (BC) cells, and aromatase (ARO) is a crucial enzyme in estrogen synthesis. Hence, it is necessary to inhibit estrogen production or the activity of ERα for the treatment of estrogen receptor-positive (ER+) BC. Herein, we present a new category of dual-targeting PROTAC degraders designed to specifically target ERα and ARO. Among them, compound 18c bifunctionally degrades and inhibits ERα/ARO, thus effectively suppressing the proliferation of MCF-7 cells while showing negligible cytotoxicity to normal cells. In vivo, 18c promotes the degradation of ERα and ARO and inhibits the growth of MCF-7 xenograft tumors. Finally, compound 18c demonstrates promising antiproliferative and ERα degradation activity against the ERαMUT cells. These findings suggest that 18c, being the inaugural dual-targeting degrader for ERα and ARO, warrants further advancement for the management of BC and the surmounting of endocrine resistance.


Assuntos
Neoplasias da Mama , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio , Humanos , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/química , Inibidores da Aromatase/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Células MCF-7 , Proteólise/efeitos dos fármacos , Camundongos Nus , Descoberta de Drogas , Relação Estrutura-Atividade
3.
J Med Chem ; 67(11): 8791-8816, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775356

RESUMO

The spread of the influenza virus has caused devastating pandemics and huge economic losses worldwide. Antiviral drugs with diverse action modes are urgently required to overcome the challenges of viral mutation and drug resistance, and targeted protein degradation strategies constitute excellent candidates for this purpose. Herein, the first degradation of the influenza virus polymerase acidic (PA) protein using small-molecule degraders developed by hydrophobic tagging (HyT) technology to effectively combat the influenza virus was reported. The SAR results revealed that compound 19b with Boc2-(L)-Lys demonstrated excellent inhibitory activity against A/WSN/33/H1N1 (EC50 = 0.015 µM) and amantadine-resistant strain (A/PR/8/H1N1), low cytotoxicity, high selectivity, substantial degradation ability, and good drug-like properties. Mechanistic studies demonstrated that the proteasome system and autophagic lysosome pathway were the potential drivers of these HyT degraders. Thus, this study provides a powerful tool for investigating the targeted degradation of influenza virus proteins and for antiviral drug development.


Assuntos
Antivirais , Interações Hidrofóbicas e Hidrofílicas , Tioureia , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Humanos , Cães , Animais , Tioureia/farmacologia , Tioureia/análogos & derivados , Tioureia/química , Relação Estrutura-Atividade , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Proteólise/efeitos dos fármacos , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/antagonistas & inibidores , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Farmacorresistência Viral/efeitos dos fármacos
4.
Eur J Med Chem ; 268: 116236, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367494

RESUMO

Estrogen receptor (ER) ß and histone deacetylases (HDACs), when overexpressed, are associated closely with the occurrence and development of prostate cancer and are, therefore, considered important targets and biomarkers used in the clinical treatment of prostate cancer. The present study involved the design and synthesis of the first ERß and HDAC dual-target near-infrared fluorescent probe with both imaging capacity and antitumor activity for prostate cancer. Both P1 and P2 probes exhibited excellent ERß selectivity, with P1 being almost exclusively selective for ERß compared to ERα. In addition, P1 exhibited good optical properties, such as strong near-infrared emission, large Stokes shift, and better anti-interference ability, along with excellent imaging ability for living cells. P1 also exhibited potent inhibitory activity against HDAC6 and DU-145 cells, with IC50 values of 52 nM and 0.96 µM, respectively. Further, P1 was applied successfully for the in vivo imaging of prostate cancer in a mouse model, and significant in vivo antitumor efficacy was achieved. The developed dual-target NIR fluorescent probe is expected to serve as an effective tool in the research on prostate cancer, leading to novel insights for the theranostic study of diseases related to ERß and HDACs.


Assuntos
Histona Desacetilases , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Receptor beta de Estrogênio , Corantes Fluorescentes/farmacologia , Medicina de Precisão , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico
5.
Eur J Med Chem ; 267: 116184, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320426

RESUMO

Proteolysis targeting chimera (PROTAC) technology, a groundbreaking strategy for degradation of pathogenic proteins by hijacking of the ubiquitin-proteasome-system has become a promising strategy in drug design. However, the real-time monitoring and visualization of protein degradation processes have been long-standing challenges in the realm of drug development. In this research, we sought to amalgamate the highly efficient protein-degrading capabilities of PROTAC technology with the visualization attributes of fluorescent probes, with the potential to pave the path for the design and development of a novel class of visual PROTACs. These novel PROTACs uniquely possess both fluorescence imaging and therapeutic characteristics, all with the goal of enabling real-time observations of protein degradation processes. Our approach involved the utilization of a high ER-targeting fluorescent probe, previously reported in our laboratory, which served as a warhead that specifically binds to the protein of interest (POI). Additionally, a VHL ligand for recruiting E3 ligase and linkers of various lengths were incorporated to synthesize a series of novel ER-inherent fluorescence PROTACs. Among them, compound A3 demonstrated remarkable efficiency in degrading ERα proteins (DC50 = 0.12 µM) and displaying exceptional anti-proliferative activity against MCF-7 cells (IC50 = 0.051 µM). Furthermore, it exhibited impressive fluorescence imaging performance, boasting an emission wavelength of up to 582 nm, a Stokes shift of 116 nm, and consistent optical properties. These attributes make it especially suitable for the real-time, in situ tracking of ERα protein degradation processes, thus may serve as a privileged visual theranostic PROTAC for ERα+ breast cancer. This study not only broadens the application spectrum of PROTAC technology but also introduces a novel approach for real-time visualization of protein degradation processes, ultimately enhancing the diagnostic and treatment efficacy of PROTACs.


Assuntos
Receptor alfa de Estrogênio , Quimera de Direcionamento de Proteólise , Humanos , Proteólise , Receptor alfa de Estrogênio/metabolismo , Medicina de Precisão , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo
6.
Acta Pharm Sin B ; 13(12): 4963-4982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045063

RESUMO

Endocrine-resistance remains a major challenge in estrogen receptor α positive (ERα+) breast cancer (BC) treatment and constitutively active somatic mutations in ERα are a common mechanism. There is an urgent need to develop novel drugs with new mode of mechanism to fight endocrine-resistance. Given aberrant ERα activity, we herein report the identification of novel covalent selective estrogen receptor degraders (cSERDs) possessing the advantages of both covalent and degradation strategies. A highly potent cSERD 29c was identified with superior anti-proliferative activity than fulvestrant against a panel of ERα+ breast cancer cell lines including mutant ERα. Crystal structure of ERα‒29c complex alongside intact mass spectrometry revealed that 29c disrupted ERα protein homeostasis through covalent targeting C530 and strong hydrophobic interaction collied on H11, thus enforcing a unique antagonist conformation and driving the ERα degradation. These significant effects of the cSERD on ERα homeostasis, unlike typical ERα degraders that occur directly via long side chains perturbing the morphology of H12, demonstrating a distinct mechanism of action (MoA). In vivo, 29c showed potent antitumor activity in MCF-7 tumor xenograft models and low toxicity. This proof-of-principle study verifies that novel cSERDs offering new opportunities for the development of innovative therapies for endocrine-resistant BC.

7.
J Med Chem ; 66(16): 11094-11117, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37584263

RESUMO

Endocrine resistance remains a significant problem in the clinical treatment of estrogen receptor α-positive (ERα+) breast cancer (BC). In this study, we developed a series of novel dual-functional ERα degraders based on a bridged bicyclic scaffold with selenocyano (SeCN) side chains. These compounds displayed potent ERα degradation and tubulin depolymerization activity. Among them, compounds 35s and 35t exhibited the most promising antiproliferative and ERα degradation activity in multiple ERα+ BC cell lines bearing either wild-type or mutant ERα. Meanwhile, compounds 35s and 35t disrupted the microtubule network by restraining tubulin polymerization, evidenced by 35t inducing cell cycle arrest in the G2/M phase. In MCF-7 and LCC2 xenograft models, compounds 35s and 35t remarkably suppressed tumor growth without noticeable poisonousness. Finally, this study provided guidance for developing new dual-target antitumor drug candidates for the ERα+ BC therapy, especially for the resistant variant.


Assuntos
Antineoplásicos , Neoplasias da Mama , Receptores de Estrogênio , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Células MCF-7 , Receptores de Estrogênio/antagonistas & inibidores , Tubulina (Proteína)/química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
8.
Eur J Med Chem ; 259: 115678, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531746

RESUMO

Evidence suggests that rapidly evolving virus subvariants risk rendering current vaccines and anti-influenza drugs ineffective. Hence, exploring novel scaffolds or new targets of anti-influenza drugs is of great urgency. Herein, we report the discovery of a series of acylthiourea derivatives produced via a scaffold-hopping strategy as potent antiviral agents against influenza A and B subtypes. The most effective compound 10m displayed subnanomolar activity against H1N1 proliferation (EC50 = 0.8 nM) and exhibited inhibitory activity toward other influenza strains, including influenza B virus and H1N1 variant (H1N1, H274Y). Additionally, druggability evaluation revealed that 10m exhibited favorable pharmacokinetic properties and was metabolically stable in liver microsome preparations from three different species as well as in human plasma. In vitro and in vivo toxicity studies confirmed that 10m demonstrated a high safety profile. Furthermore, 10m exhibited satisfactory antiviral activity in a lethal influenza virus mouse model. Moreover, mechanistic studies indicated that these acylthiourea derivatives inhibited influenza virus proliferation by targeting influenza virus RNA-dependent RNA polymerase. Thus, 10m is a potential lead compound for the further exploration of treatment options for influenza.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Tioureia , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza B , Influenza Humana/tratamento farmacológico , RNA Polimerase Dependente de RNA , Tioureia/análogos & derivados , Tioureia/química
9.
Cell Insight ; 2(3): 100092, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37398636

RESUMO

Proteolysis targeting chimera (PROTAC) degradation of pathogenic proteins by hijacking of the ubiquitin-proteasome-system has become a promising strategy in drug design. The overwhelming advantages of PROTAC technology have ensured a rapid and wide usage, and multiple PROTACs have entered clinical trials. Several antiviral PROTACs have been developed with promising bioactivities against various pathogenic viruses. However, the number of reported antiviral PROTACs is far less than that of other diseases, e.g., cancers, immune disorders, and neurodegenerative diseases, possibly because of the common deficiencies of PROTAC technology (e.g., limited available ligands and poor membrane permeability) plus the complex mechanism involved and the high tendency of viral mutation during transmission and replication, which may challenge the successful development of effective antiviral PROTACs. This review highlights the important advances in this rapidly growing field and critical limitations encountered in developing antiviral PROTACs by analyzing the current status and representative examples of antiviral PROTACs and other PROTAC-like antiviral agents. We also summarize and analyze the general principles and strategies for antiviral PROTAC design and optimization with the intent of indicating the potential strategic directions for future progress.

10.
J Med Chem ; 66(10): 6631-6651, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37161783

RESUMO

The estrogen receptor (ER) is a well-established target for endocrine therapies of ER-positive breast cancer (ER+ BC), but endocrine resistance limits the efficacy of clinical drugs. Using proteolysis targeting chimera (PROTAC) technology to degrade ERα may be an effective alternative to endocrine therapies. Herein, we disclose a novel series of potent and selective ERα PROTACs based on an oxabicycloheptane sulfonamide (OBHSA) scaffold, with no associated ERß degradation. These PROTACs showed significant antiproliferation and ERα degradation activities against a broad spectrum of ER+ BC cells including tamoxifen-resistant and ERα mutant cell lines. Genomics analysis confirmed that these PROTACs inhibited the nascent RNA synthesis of ERα target genes and impaired genome-wide ERα binding. Compound ZD12 exhibited excellent antitumor potency and ERα degradation activity in both tamoxifen-sensitive and -resistant BC mice models, which are superior to fulvestrant. This study demonstrates the potential of these PROTACs as novel drug candidates for endocrine-resistant BC treatment.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Humanos , Animais , Camundongos , Feminino , Receptor alfa de Estrogênio/metabolismo , Quimera de Direcionamento de Proteólise , Células MCF-7 , Antagonistas de Estrogênios/farmacologia , Antagonistas de Estrogênios/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células
11.
Bioorg Chem ; 137: 106590, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37163809

RESUMO

In view of the potential off-target effects of antitumor drugs, including proteolysis targeting chimera (PROTAC), certain toxic effects may be caused in normal tissues. Herein, based on the characteristics of the tumor microenvironment, we reported the first estrogen receptor α (ERα) targeting hypoxia-responsive PROTACs in order to improve their safety in breast cancer treatment by introducing two hypoxia-activated groups, nitroimidazole and nitrobenzene, into the ER ligand or E3 ligand of an active PROTAC, which has certain cytotoxicity in normal cells. Bioactivity studies showed that these hypoxia-responsive PROTACs exhibited excellent hypoxic responsiveness and ERα degradation activity under hypoxic conditions, and thus improved the toxic effects of the active PROTAC in normal cells. It is expected that our caged compounds provide a new strategy for precise functional control of PROTAC drugs for breast cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Quimera de Direcionamento de Proteólise , Ligantes , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Esqueleto/metabolismo , Esqueleto/patologia , Proteólise , Microambiente Tumoral
12.
Eur J Med Chem ; 253: 115328, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037140

RESUMO

Drug resistance is a major challenge in conventional endocrine therapy for estrogen receptor (ER) positive breast cancer (BC). BC is a multifactorial disease, in which simultaneous aromatase (ARO) inhibition and ERα degradation may effectively inhibit the signal transduction of both proteins, thus potentially overcoming drug resistance caused by overexpression or mutation of target proteins. In this study, guided by the X-ray structure of a hit compound 30a in complex with ER-Y537S, a structure-based optimization was performed to get a series of multiacting inhibitors targeting both ERα and ARO, and finally a novel class of potent selective estrogen receptor degraders (SERDs) based on a three-dimensional oxabicycloheptene sulfonamide (OBHSA) scaffold equipped with aromatase inhibitor (AI) activity were identified. Of these dual-targeting SERD-AI hybrids, compound 31q incorporating a 1H-1,2,4-triazole moiety showed excellent ERα degradation activity, ARO inhibitory activity and remarkable antiproliferative activity against BC resistant cells. Furthermore, 31q manifested efficient tumor suppression in MCF-7 tumor xenograft models. Taken together, our study reported for the first time the highly efficient dual-targeting SERD-AI hybrid compounds, which may lay the foundation of translational research for improved treatment of endocrine-resistant BC.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptores de Estrogênio/metabolismo
13.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903555

RESUMO

Hydrogen peroxide is one of the most important reactive oxygen species, which plays a vital role in many physiological and pathological processes. A dramatic increase in H2O2 levels is a prominent feature of cancer. Therefore, rapid and sensitive detection of H2O2 in vivo is quite conducive to an early cancer diagnosis. On the other hand, the therapeutic potential of estrogen receptor beta (ERß) has been implicated in many diseases including prostate cancer, and this target has attracted intensive attention recently. In this work, we report the development of the first H2O2-triggered ERß-targeted near-infrared fluorescence (NIR) probe and its application in imaging of prostate cancer both in vitro and in vivo. The probe showed good ERß selective binding affinity, excellent H2O2 responsiveness and near infrared imaging potential. Moreover, in vivo and ex vivo imaging studies indicated that the probe could selectively bind to DU-145 prostate cancer cells and rapidly visualizes H2O2 in DU-145 xenograft tumors. Mechanistic studies such as high-resolution mass spectrometry (HRMS) and density functional theory (DFT) calculations indicated that the borate ester group is vital for the H2O2 response turn-on fluorescence of the probe. Therefore, this probe might be a promising imaging tool for monitoring the H2O2 levels and early diagnosis studies in prostate cancer research.


Assuntos
Peróxido de Hidrogênio , Neoplasias da Próstata , Humanos , Masculino , Diagnóstico por Imagem , Receptor beta de Estrogênio , Fluorescência , Corantes Fluorescentes/química , Peróxido de Hidrogênio/química , Animais
14.
Pharmacol Ther ; 242: 108350, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36690079

RESUMO

Estrogen receptor ß (ERß) is closely related to breast cancer (BC) progression. Traditional concepts regard ERß as a tumor suppressor. As studies show the carcinogenic effect of ERß, some people have come to a new conclusion that ERß serves as a tumor suppressor in estrogen receptor α (ERα)-positive breast cancer, while it is a carcinogen in ERα-negative breast cancer. However, we re-examine the role of ERß and find this conclusion to be misleading based on the last decade's research. A large number of studies have shown that ERß plays an anticancer role in both ERα-positive and ERα-negative breast cancers, and its carcinogenicity does not depend solely on the presence of ERα. Herein, we review the anticancer and oncogenic effects of ERß on breast cancer progression in the past ten years, discuss the mechanism respectively, analyze the main reasons for the inconsistency and update ERß selective ligand library. We believe a detailed and continuously updated review will help correct the one-sided understanding of ERß, promoting ERß-targeted breast cancer therapy.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinogênese , Carcinógenos , Receptor alfa de Estrogênio , Receptor beta de Estrogênio
15.
Eur J Med Chem ; 238: 114506, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35671592

RESUMO

Aberrant expression of estrogen receptor ß (ERß) and tumor hypoxia have been observed in castration-resistant prostate cancer (CRPC); therefore, hypoxia-responsive labeling of ERß will be beneficial for the early diagnosis and treatment of CRPC. Herein, we report the first ERß-targeted hypoxia-responsive near-infrared fluorescent probes, which showed superior ERß selectivity and favorable optical properties. These two probes exhibited excellent hypoxia responsiveness and specific mitochondrial ERß imaging ability in CRPC cells. In addition, P1 displayed strong anti-interference ability and good tumor imaging capacity in vivo, contributing to effective diagnosis of CRPC. Mechanistic studies, including high resolution mass spectrometry (HRMS) and density functional theory (DFT) calculations, showed that the introduction of a nitro group quenched the probe fluorescence by inducing a PET effect, while in the hypoxic tumor microenvironment, reduction of the nitro group blocked the PET effect and turned on the probe fluorescence. These novel ERß-targeted hypoxia-responsive near-infrared fluorescent probes may promote the study of prostate cancer.


Assuntos
Receptor beta de Estrogênio , Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Receptor beta de Estrogênio/metabolismo , Fluorescência , Corantes Fluorescentes/química , Humanos , Hipóxia , Masculino , Microambiente Tumoral
16.
J Med Chem ; 65(11): 7993-8010, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35611405

RESUMO

Breast cancer (BC) is a multifactorial disease and is prone to drug resistance during treatment. In this study, we described a new class of multifunctional estrogen receptor (ER) modulators ground on a prerogative indirect antagonism skeleton (OBHS, oxabicycloheptene sulfonate) of ER containing a phenylselenyl group. Compound 34b showed significant antiproliferative activities against tamoxifen-sensitive (MCF-7) and -resistant (LCC2) cells. Moreover, hexokinase 1 (HK1) was identified as a direct target of 34b. Further mechanism investigations proved that 34b induced apoptosis, which was associated with mitochondrial dysfunction caused by the synergistic effects of downregulating mitochondrial-bound HK1 protein and promoting reactive oxygen species generation. In vivo, 34b had a favorable pharmacokinetic profile with a bioavailability of 23.20% and exhibited more potent tumor suppression than tamoxifen both in MCF-7 and LCC2 tumor xenograft models. Collectively, our studies showed that 34b is a promising new multifunctional candidate compound for ERα+ BC treatment, particularly for tamoxifen-resistant BC.


Assuntos
Neoplasias da Mama , Moduladores de Receptor Estrogênico , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Moduladores de Receptor Estrogênico/farmacologia , Moduladores de Receptor Estrogênico/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
17.
Bioorg Chem ; 122: 105683, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278779

RESUMO

Enterovirus A71 (EV-A71), one of the major pathogens that causes hand, foot and mouth disease (HFMD), has seriously threatened the health and safety of young children. In this study, aminothiazole derivatives were synthesized and screened against EV-A71 in Rhabdomyosarcoma (RD) cells. The best compound (12s), with a biphenyl group, showed activity against EV-A71 (EC50: 0.27 µM) but also against a series of different human enteroviruses without significant cytotoxicity (CC50 > 56.2 µM). Mechanistic studies including time-of-drug-addition assays, viral entry assays and microscale thermophoresis (MST) experiments, showed that 12s binds to EV-A71 capsid and blocks the binding between the viral protein VP1 and the relevant human scavenger receptor class B member 2 (hSCARB2).


Assuntos
Proteínas do Capsídeo , Enterovirus Humano A , Tiazóis , Proteínas do Capsídeo/antagonistas & inibidores , Enterovirus Humano A/efeitos dos fármacos , Infecções por Enterovirus/tratamento farmacológico , Humanos , Tiazóis/farmacologia , Internalização do Vírus
18.
J Med Chem ; 65(5): 3814-3832, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35212527

RESUMO

Influenza A viruses possess a high antigenic shift, and the approved anti-influenza drugs are extremely limited, which makes the development of novel anti-influenza drugs for the clinical treatment and prevention of influenza outbreaks imperative. Herein, we report a series of novel aryl benzoyl hydrazide analogs as potent anti-influenza agents. Particularly, analogs 10b, 10c, 10g, 11p, and 11q exhibited potent inhibitory activity against the avian H5N1 flu strain with EC50 values ranging from 0.009 to 0.034 µM. Moreover, compound 11q exhibited nanomolar antiviral effects against both the H1N1 virus and Flu B virus and possessed good oral bioavailability and inhibitory activity against influenza A virus in a mouse model. Preliminary mechanistic studies suggested that these compounds exert anti-influenza virus effects mainly by interacting with the PB1 subunit of RNA-dependent RNA polymerase (RdRp). These results revealed that 11q has the potential to become a potent clinical candidate to combat seasonal influenza and influenza pandemics.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Antivirais/farmacologia , Humanos , Hidrazinas/farmacologia , Influenza Humana/tratamento farmacológico , Camundongos , RNA Polimerase Dependente de RNA , Replicação Viral
19.
Cell Insight ; 1(3): 100030, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193052

RESUMO

Annual and sporadic influenza outbreaks pose a great threat to human health and the economy worldwide. Moreover, the frequent mutation of influenza viruses caused by antigen drift complicates the application of antiviral therapeutics. As such, there is an urgent need for novel antiviral agents to tackle the problem of insufficient efficacy of licensed drugs. Inspired by the success of the newly emerged PROTACs (PROteolysis TArgeting Chimeras) strategy, we report herein the design and synthesis of novel PROTAC molecules based on an oseltamivir scaffold to combat severe annual influenza outbreaks. Among these, several compounds showed good anti-H1N1 activity and efficient influenza neuraminidase (NA) degradation activity. The best compound, 8e, effectively induced influenza NA degradation in a dose-dependent manner and relied on the ubiquitin-proteasome pathway. Moreover, Compound 8e exhibited potent antiviral activity toward both wild-type H1N1 virus and an oseltamivir-resistant strain (H1N1, H274Y). A molecular docking study demonstrated that Compound 8e had good hydrogen-bonding and hydrophobic interactions with both the active sites of NA and Von Hippel-Lindau (VHL) proteins, which could effectively drive the favorable interaction of these two proteins. Thus, as the first report of a successful anti-influenza PROTAC, this proof of concept will greatly widen the application range of the PROTAC technique to antiviral drug discovery.

20.
ACS Sens ; 7(1): 109-115, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34914372

RESUMO

Estrogen receptor ß (ERß) is associated with many diseases, and ERß probes can help to reveal the complex role of ERß and promote the development of ERß-targeted therapy. Herein, we designed and synthesized the first ERß-targeted near-infrared (NIR) inherently fluorescent probe P5, which showed the advantages of high ERß selectivity, good optical properties, and excellent ERß imaging capability in living cells. The probe was successfully utilized to explore ERß motion characteristic, and for the first time, the diffusion coefficient of ERß was obtained. Moreover, P5 was also successfully applied to the in vivo imaging of ERß in the prostate cancer mice model. Therefore, this ERß-targeted NIR probe might be employed as a potential tool for the research of ERß and related diseases.


Assuntos
Receptor beta de Estrogênio , Corantes Fluorescentes , Animais , Diagnóstico por Imagem , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...