Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Commun ; 15(1): 5800, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987276

RESUMO

Enhancing influenza vaccine cross-protection is imperative to alleviate the significant public health burden of influenza. Heterologous sequential immunization may synergize diverse vaccine formulations and routes to improve vaccine potency and breadth. Here we investigate the effects of immunization strategies on the generation of cross-protective immune responses in female Balb/c mice, utilizing mRNA lipid nanoparticle (LNP) and protein-based PHC nanoparticle vaccines targeting influenza hemagglutinin. Our findings emphasize the crucial role of priming vaccination in shaping Th bias and immunodominance hierarchies. mRNA LNP prime favors Th1-leaning responses, while PHC prime elicits Th2-skewing responses. We demonstrate that cellular and mucosal immune responses are pivotal correlates of cross-protection against influenza. Notably, intranasal PHC immunization outperforms its intramuscular counterpart in inducing mucosal immunity and conferring cross-protection. Sequential mRNA LNP prime and intranasal PHC boost demonstrate optimal cross-protection against antigenically drifted and shifted influenza strains. Our study offers valuable insights into tailoring immunization strategies to optimize influenza vaccine effectiveness.


Assuntos
Administração Intranasal , Proteção Cruzada , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Nanopartículas/química , Feminino , Proteção Cruzada/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Camundongos , Imunidade nas Mucosas/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Lipídeos/química , Anticorpos Antivirais/imunologia , Humanos , Imunização/métodos , Vacinação/métodos , Nanovacinas , Lipossomos
2.
Int J Biol Macromol ; 271(Pt 2): 131982, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724335

RESUMO

Fibrosis is a common pathological process affecting multiple organs. It refers to an increase in fibrous connective tissue and a decrease in parenchymal cells in damaged tissues or organs. This may lead to structural damage and functional decline or even organ failure. The incidence of fibrosis is increasing worldwide, and the need for safe and effective therapeutic drugs and treatments is pivotal. The intestinal tract has a complex network of exchanging information with various tissues in the body. It contains a sizeable microbial community of which the homeostasis and metabolites are closely related to fibrosis. Polysaccharides are a class of biomolecules present in natural products; they have potential value as anti-fibrotic prebiotics. Recently, polysaccharides have been found to improve fibrosis in different organs by decreasing inflammation and modulating the immune function and intestinal microbiota. In this paper, we reviewed the progress made in research concerning polysaccharides and organ fibrosis in relation to the intestinal microbiota from the pathogenesis of fibrosis to the relationship between the intestinal flora and fibrosis. Furthermore, we provide ideas and references for future polysaccharide-drug discovery and strategies for the treatment of fibrosis.


Assuntos
Fibrose , Microbioma Gastrointestinal , Polissacarídeos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Animais , Prebióticos
4.
RSC Med Chem ; 15(4): 1161-1175, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665838

RESUMO

PD-L1 is a transmembrane protein overexpressed by tumor cells. It binds to PD-1 on the surface of T-cells, suppresses T-cell activity and hinders the immune response against cancer. Clinically, several monoclonal antibodies targeting PD-1/PD-L1 have achieved significant success in cancer immunotherapy. Nevertheless, their disadvantages, such as unchecked immune responses, high cost and long half-life, stimulated pharmacologists to develop small-molecule inhibitors targeting PD-1/PD-L1. After a batch of excellent inhibitors with a biphenyl core structure were firstly reported by BMS, more and more researchers focused on small-molecule inhibitors targeting PD-L1 rather than PD-1. Numerous small-molecule inhibitors were extensively designed and synthesized in the past few years. In this paper, the structural characteristics of PD-L1 and complexes of PD-L1 with its inhibitors are elaborated and small molecule inhibitors developed in the last decade are summarized as well. This paper aims to provide insights into further designing and synthesis of small molecule inhibitors targeting PD-L1.

5.
Carbohydr Res ; 538: 109072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484601

RESUMO

Fructus Corni, derived from the dried fruit of Cornus officinalis Sieb. Et Zucc., is widely used as a food source and Chinese herb. Fructus Corni, as an indispensable ingredient in Liuwei Dihuang decoction, tonifies the liver and kidneys. As the main component of water decoctions, Fructus Corni polysaccharides demonstrate multifaceted effects, including hypoglycemic, hypolipidemic, antioxidant, anti-aging, sexual function regulation, and anti-epileptic, The ultrasound-assisted extraction method obtained the highest yields of Fructus Corni polysaccharides. However, it has notable shortcomings and lacks further innovation. The homogeneous polysaccharides obtained from Fructus Corni are mostly neutral polysaccharides with relatively limited structure, and the mechanism of their biological activity needs to be further elucidated. In addition, different extraction, isolation and purification methods may change the molecular weight, monosaccharide composition, and biological activity of polysaccharides. Therefore, this study systematically summarized the extraction, purification, structural features, and biological activities of Fructus Corni polysaccharides. This study aimed to provide support for the ongoing development and application of Fructus Corni polysaccharides.


Assuntos
Frutas , Polissacarídeos , Frutas/química , Polissacarídeos/química , Hipoglicemiantes , Fígado , Antioxidantes/farmacologia
6.
PLoS One ; 19(3): e0299658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452038

RESUMO

To address the issues of tractors using too much fuel and not being energy efficient, a predictive control strategy based on Pontryagin's minimum principle integrating working condition prediction is proposed for agricultural hybrid tractors. The Dongfanghong 1804 tractor is being used for research. Firstly, the main parameters of the hybrid drive system are determined and modeled. Secondly, based on the adaptive cubic exponential forecasting method, the working condition information for a period of time in the future is predicted through historical working condition information. Furthermore, combining the predicted working conditions information, the goal is to minimize the total energy consumption cost of the entire machine. Motor power and diesel engine power are control variables. The battery state of charge is a state variable. Subsequently, a predictive control strategy based on Pontryagin's minimum principle integrating working condition prediction is proposed. Finally, the simulation test is carried out based on the MATLAB simulation platform. Research indicates: under plowing conditions, compared with the power following control strategy, the proposed predictive control strategy can effectively manage the performance of the diesel engine and motor, ensuring they operate at their most efficient level. The total energy consumption costs of the power following control and predictive control strategies are 37.17 China Yuan (CNY) and 33.67 CNY, respectively. The cost of energy used is decreased by 9. 42%, which helps make tractor field plowing more efficient and economical.


Assuntos
Agricultura , Motivação , Fenômenos Físicos , China , Simulação por Computador
7.
Viruses ; 16(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257820

RESUMO

mRNA-based vaccine technology has been significantly developed and enhanced, particularly highlighted by the authorization of mRNA vaccines for addressing the COVID-19 pandemic. Various biomaterials are developed in nano-scales and applied as mRNA vaccine delivery platforms. However, how these mRNA nanoplatforms influence immune responses has not been thoroughly studied. Hence, we have reviewed the current understanding of various mRNA vaccine platforms. We discussed the possible pathways through which these platforms moderate the host's innate immunity and contribute to the development of adaptive immunity. We shed light on their development in reducing biotoxicity and enhancing antigen delivery efficiency. Beyond the built-in adjuvanticity of mRNA vaccines, we propose that supplementary adjuvants may be required to fine-tune and precisely control innate immunity and subsequent adaptive immune responses.


Assuntos
Pandemias , Vacinas de mRNA , Humanos , Imunidade Inata , Imunidade Adaptativa , RNA Mensageiro/genética
8.
Vaccine ; 42(2): 111-119, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38097456

RESUMO

The first influenza virus infection (imprinting) can lead to long-term immune memory and influence subsequent vaccinations and infections. Previously, we reported a polyethyleneimine (PEI)-Aichi hemagglutinin (HA)/CpG (PHC) nanoparticle with cross-protective potential against homologous and heterologous influenza strains. Here we studied how influenza immune imprinting influences the antibody responses to the PHC vaccination and the protection against heterosubtypic virus challenges. We found that pre-existing virus immunity can maintain or synergize the vaccine-induced antibody titers, depending on the imprinting virus HA phylogenetic group. The HA group 1 virus (PR8, H1N1)-imprinted mice displayed comparable antigen-specific antibody responses to those without imprinting post-PHC vaccination. In contrast, the group 2 virus (Phi, H3N2)-imprinted mice showed significantly more robust and balanced antibodies post-vaccination, conferring complete protection against body weight loss and lung inflammation upon heterosubtypic reassortant A/Shanghai/2/2013 (rSH, H7N9) virus challenge. Our findings suggest that influenza imprinting from the same HA phylogenetic group can synergize subsequent vaccination, conferring heterosubtypic protection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Hemaglutininas , Nanovacinas , Polietilenoimina , Vírus da Influenza A Subtipo H3N2 , Filogenia , Anticorpos Antivirais , China , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Camundongos Endogâmicos BALB C
9.
Chin J Nat Med ; 21(12): 886-901, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38143103

RESUMO

In carbohydrate chemistry, the stereoselective synthesis of 1,2-cis-glycosides remains a formidable challenge. This complexity is comparable to the synthesis of 1,2-cis-ß-D-mannosides, primarily due to the adverse anomeric and Δ-2 effects. Over the past decades, to attain ß-stereoselectivity in D-rhamnosylation, researchers have devised numerous direct and indirect methodologies, including the hydrogen-bond-mediated aglycone delivery (HAD) method, the synthesis of ß-D-mannoside paired with C6 deoxygenation, and the combined approach of 1,2-trans-glycosylation and C2 epimerization. This review elaborates on the advancements in ß-D-rhamnosylation and its implications for the total synthesis of tiacumicin B and other physiologically relevant glycans.


Assuntos
Glicosídeos , Manosídeos , Glicosilação , Estereoisomerismo
10.
RSC Adv ; 13(47): 33204-33209, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37954426

RESUMO

Iridoid glycoside, which belongs to the polyhydroxy compound, is a kind of active ingredient of traditional Chinese medicine with a wide range of sources, and has many pharmacological effects such as anti-cancer, anti-inflammatory, anti-virus, hypoglycemic and so on. Its structure contains many hydroxyl groups, including two primary hydroxyl groups. The chemical reactivity of primary hydroxyl groups has very little difference, so it is very important to control the selectivity of hydroxyl groups under certain conditions. In this paper, the difference between the two primary hydroxyl groups in iridoid glycoside was calculated based on computer simulation and verified this result through designed experiments. This study will provide an important way for site-directed modification of hydroxyl in iridoid glycoside in the future.

11.
J Hepatocell Carcinoma ; 10: 935-948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361906

RESUMO

Purpose: To reveal the potential mechanism of PDA on hepatocellular carcinoma SMMC-7721 cells in vitro. Methods: The cytotoxic activity, colony formation, cell cycle distribution, apoptosis and their associated protein analysis, intracellular reactive oxygen species (ROS) and Ca2+ levels, proteins in Nrf2 and Ntoch pathways and metabolite profiles of PDA against hepatocellular carcinoma were investigated. Results: PDA with cytotoxic activity inhibited cell proliferation and migration, increased intracellular ROS, Ca2+ levels and MCUR1 protein expression in a dose-dependent manner, caused cell cycle arrest in the S phase and induced apoptosis via adjusting the levels of Bcl-2, Bax, and Caspase 3 proteins, and inhibited the activation of Notch1, Jagged, Hes1, Nrf2 and HO-1 proteins. Metabonomics data showed that PDA significantly regulated 144 metabolite levels tend to be normal level, especially carnitine derivatives, bile acid metabolites associated with hepatocellular carcinoma, and mainly enriched in ABC transporter, arginine and proline metabolism, primary bile acid biosynthesis, Notch signaling pathway, etc, and proved that PDA markedly adjusted Notch signaling pathway. Conclusion: PDA exhibited the proliferation inhibition of SMMC-7721 cells by inhibiting ROS/Nrf2/Notch signaling pathway and significantly affected the metabolic profile, suggesting PDA could be a potential therapeutic agent for patients with hepatocellular carcinoma.

12.
Chem Asian J ; 18(12): e202300185, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129956

RESUMO

A series of C10-position imidazole-modified catalpol derivatives are specifically designed and synthesized for serving as potential pancreatic cancer inhibitors, which are characterized by 1 H NMR, 13 C NMR and high-resolution mass spectrometry (HRMS). They were evaluated by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) test on two human pancreatic cancer cells PANC-1, BxPC-3 and normal pancreatic cell HPDE6-C7, which showed the significant inhibitory effected on the growth of human pancreatic cancer cells of PANC-1 and BxPC-3, especially 91.6% efficacy on BxPC-3, and 73.1% on PANC-1. Simulation studies like molecular docking supported strong binding of vascular endothelial growth factor receptor 2 (VEGFR-2) protein tyrosine kinase (PDB ID: 4AGD), a target of pancreatic cancer. A novel imidazol-modified catalpol compound 3i with strong inhibitory effect on pancreatic cancer cells, which could potentially develop into anti-pancreatic cancer drug candidates in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Relação Estrutura-Atividade , Neoplasias Pancreáticas
13.
Sci Rep ; 13(1): 7756, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173367

RESUMO

Catalpol, a natural product mainly existed in plenty of Chinese traditional medicines, is an iridoid compound with the comprehensive effects on neuroprotective, anti-inflammatory, choleretic, hypoglycemic and anticancer. However, there are some disadvantages for catalpol such as a short half-life in vivo, low druggability, stingy binding efficiency to target proteins and so on. It is necessary to make structural modification and optimization which enhance its performance on disease treatments and clinic applications. Pyrazole compounds have been reported to have excellent anticancer activities. Based on the previous research foundation of our research group on iridoids and the anticancer activities of catalpol and pyrazole, a series of pyrazole modified catalpol compounds were synthesized by principle of drug combination for serving as potential cancer inhibitors. These derivatives are characterized by 1H NMR, 13C NMR and HRMS. The efficacy of anti-esophageal cancer and anti-pancreatic cancer activities were evaluated by the MTT assay on two esophageal cancer cells Eca-109 and EC-9706, and two pancreatic cancer cells PANC-1, BxPC-3 and normal pancreatic cell line HPDE6-C7, which showed that the compound 3e had strong inhibitory activity against esophageal cancer cells, this providing a theoretical basis for the discovery of catalpol-containing drugs.


Assuntos
Glucosídeos Iridoides , Neoplasias , Humanos , Glucosídeos Iridoides/farmacologia , Linhagem Celular , Pirazóis/química
14.
Small ; 19(34): e2301801, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37162451

RESUMO

The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited. Immune-stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA-M2e SDAD protein nanoparticle-induced immune responses when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induce significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM /BRM ) and alveolar macrophages population are observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.


Assuntos
ISCOMs , Vacinas contra Influenza , Nanopartículas , Animais , Camundongos , Imunidade nas Mucosas , Complexo Antígeno-Anticorpo , Vírus da Influenza A Subtipo H3N2 , Adjuvantes Imunológicos , Camundongos Endogâmicos BALB C
15.
Front Nutr ; 10: 1107551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969821

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is a leading cause of cirrhosis and hepatocellular carcinoma. Due to its complex pathophysiology, there is currently no approved therapy. Polysaccharide, a kind of natural product, possesses a wide range of pharmacological activities. Numerous preclinical studies have confirmed that polysaccharides could interfere with the occurrence and development of NAFLD at multiple interrelated levels, such as improvement of glucose and lipid metabolism, antioxidation, anti-inflammation, and regulation of gut-liver axis, thus showing great potential as novel anti-NAFLD drugs. In this paper, we reviewed the polysaccharides with anti-NAFLD effect in recent years, and also systematically analyzed their possible pharmacological mechanisms.

16.
Nanomedicine ; 47: 102614, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265560

RESUMO

Universal influenza vaccines are urgently needed to prevent recurrent influenza epidemics and inevitable pandemics. We generated double-layered protein nanoparticles incorporating two conserved influenza antigens-nucleoprotein and neuraminidase-through a two-step desolvation-crosslinking method. These protein nanoparticles displayed immunostimulatory properties to antigen-presenting cells by promoting inflammatory cytokine (IL-6 and TNF-α) secretion from JAWS II dendric cells. The nanoparticle immunization induced significant antigen-specific humoral and cellular responses, including antigen-binding and neutralizing antibodies, antibody- and cytokine (IFN-γ and IL-4)-secreting cells, and NP147-155 tetramer-specific cytotoxic T lymphocyte (CTL) responses. Co-administration of monophosphoryl lipid A (MPLA, a toll-like receptor 4 agonist) with the protein nanoparticles further improved immune responses and conferred heterologous and heterosubtypic influenza protection. The MPLA-adjuvanted nanoparticles reduced lung inflammation post-infection. The results demonstrated that the combination of MPLA and conserved protein nanoparticles could be developed into an improved universal influenza vaccine strategy.


Assuntos
Adjuvantes Imunológicos , Infecções por Orthomyxoviridae , Orthomyxoviridae , Citocinas , Neuraminidase , Nucleoproteínas , Animais , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Nanopartículas
17.
Anticancer Agents Med Chem ; 23(7): 736-746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36278443

RESUMO

PURPOSE: The Warburg effect is an important metabolic feature of tumours, and hexokinase is the first ratelimiting enzyme of the glycolytic pathway during tumour metabolism. Among hexokinase subtypes, hexokinase 2 (HK2) is increasingly proving to be a key target for cancer treatment. This study presents the challenges and potential strategies for developing HK2 inhibitors by systematically summarising the characteristics of HK2 inhibitors reported in the literature and patents. METHODS: In this study, we analysed the HK2 active site using molecular docking and evaluated the structure, biochemical and physiological function, activity, and action mechanism of reported HK2 inhibitors using databases (Science, SCI Finder, CNKI, and WANFANG DATA). RESULTS: In total, 6 natural inhibitors of HK2, 9 synthetic inhibitors of HK2, and 3 compounds with patent-pending HK2 inhibitory effects were obtained by searching 87 articles. These inhibitors have poor efficacy and specificity when used alone and have numerous side effects; therefore, there is an urgent need to develop HK2 inhibitors with improved activity and high selectivity. CONCLUSION: HK2 has received much attention in anticancer drug development, but most previous studies have focused on elucidating the action mechanism of HK2 in carcinogenesis, whereas the development of its small-molecule inhibitors has rarely been reported. In this study, we analysed and illustrated the eutectic structure of small molecules with the catalytic structural domain of HK2 to develop highly selective and low-toxicity HK2 inhibitors.


Assuntos
Hexoquinase , Neoplasias , Humanos , Hexoquinase/metabolismo , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Glicólise , Linhagem Celular Tumoral
18.
Mol Ther Nucleic Acids ; 30: 421-437, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36420215

RESUMO

Increasing preclinical and clinical results have demonstrated that mRNA vaccines efficiently prevent infectious diseases and are safe in animal models and humans. In this study, we fabricated a multivalent influenza mRNA lipid nanoparticle (LNP) vaccine with mRNAs of hemagglutinins from influenza H1N1 and H3N2 viruses, matrix protein 1, and nucleoprotein. We found that cutaneous immunization with mRNA LNPs induced strong Th1 and Th2 cellular immunity with robust antigen-specific antibody titers and increased cytokine-secreting splenocytes and antibody-secreting cells. The supplement of cGAMP improved the immunogenicity of mRNA LNPs. Compared with αGC or cGAMP/αGC adjuvanted mRNA LNP formulations in our study, cGAMP mRNA LNPs induced more robust antibody responses. Enhanced cellular immunity with more IL-4 and IFN-γ secreting cells and effector memory T cell populations in spleens, as well as increased CD4+ resident memory (TRM) T cells in lungs were observed in cGAMP mRNA LNPs immunized group. These results demonstrated that cGAMP is an effective adjuvant for cutaneous vaccination of multivalent mRNA LNP vaccines in mice to induce stronger immune responses in the spleen and lung, and the cGAMP-adjuvanted mRNA LNPs protected against homologous and heterologous viral infection.

19.
Biomaterials ; 287: 121664, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35810540

RESUMO

The influenza epidemics pose a significant threat to public health. Of them, type B influenza coincided with several severe flu outbreaks. The efficacy of the current seasonal flu vaccine is limited due to the antigenicity changes of circulating strains. In this study, we generated structure-stabilized HA stalk antigens from influenza B and fabricated double-layered protein nanoparticles as universal influenza B vaccine candidates. In vitro studies found that the resulting protein nanoparticles were effectively taken up to activate dendritic cells. Nanoparticle immunization induced broadly reactive immune responses conferring robust and sustained cross-immune protection against influenza B virus strains of both lineages. The results reveal the potential of layered protein nanoparticles incorporated with structure-stabilized constant antigens as a universal influenza vaccine with improved immune protective potency and breadth.

20.
Bioorg Med Chem ; 68: 116806, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696797

RESUMO

Phosphorylated saccharides are valuable targets in glycochemistry and glycobiology, which play an important role in various physiological and pathological processes. The current research on phosphorylated saccharides primarily focuses on small molecule inhibitors, glycoconjugate vaccines and novel anti-tumour targeted drug carrier materials. It can maximise the pharmacological effects and reduce the toxicity risk caused by nonspecific off-target reactions of drug molecules. However, the number and types of natural phosphorylated saccharides are limited, and the complexity and heterogeneity of their structures after extraction and separation seriously restrict their applications in pharmaceutical development. The increasing demands for the research on these molecules have extensively promoted the development of carbohydrate synthesis. Numerous innovative synthetic methodologies have been reported regarding the continuous expansion of the potential building blocks, catalysts, and phosphorylation reagents. This review summarizes the latest methods for enzymatic and chemical synthesis of phosphorylated saccharides, emphasizing their breakthroughs in yield, reactivity, regioselectivity, and application scope. Additionally, the anti-bacterial, anti-tumour, immunoregulatory and other biological activities of some phosphorylated saccharides and their applications were also reviewed. Their structure-activity relationship and mechanism of action were discussed and the key phosphorylation characteristics, sites and extents responsible for observed biological activities were emphasised. This paper will provide a reference for the application of phosphorylated saccharide in the research of carbohydrate-based drugs in the future.


Assuntos
Carboidratos , Neoplasias , Carboidratos/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...