Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Sci ; 41(2): 398-404, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33877559

RESUMO

Numerous methods have been published to segment the infarct tissue in the left ventricle, most of them either need manual work, post-processing, or suffer from poor reproducibility. We proposed an automatic segmentation method for segmenting the infarct tissue in left ventricle with myocardial infarction. Cardiac images of a total of 60 diseased hearts (55 human hearts and 5 porcine hearts) were used in this study. The epicardial and endocardial boundaries of the ventricles in every 2D slice of the cardiac magnetic resonance with late gadolinium enhancement images were manually segmented. The subsequent pipeline of infarct tissue segmentation is fully automatic. The segmentation results with the automatic algorithm proposed in this paper were compared to the consensus ground truth. The median of Dice overlap between our automatic method and the consensus ground truth is 0.79. We also compared the automatic method with the consensus ground truth using different image sources from different centers with different scan parameters and different scan machines. The results showed that the Dice overlap with the public dataset was 0.83, and the overall Dice overlap was 0.79. The results show that our method is robust with respect to different MRI image sources, which were scanned by different centers with different image collection parameters. The segmentation accuracy we obtained is comparable to or better than that of the conventional semi-automatic methods. Our segmentation method may be useful for processing large amount of dataset in clinic.


Assuntos
Cicatriz/diagnóstico por imagem , Gadolínio/química , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Animais , Automação , Humanos , Suínos
3.
Front Chem ; 8: 102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211372

RESUMO

Tough gel with extreme temperature tolerance is a class of soft materials having potential applications in the specific fields that require excellent integrated properties under subzero temperature. Herein, physically crosslinked Europium (Eu)-alginate/polyvinyl alcohol (PVA) organohydrogels that do not freeze at far below 0°C, while retention of high stress and stretchability is demonstrated. These organohydrogels are synthesized through displacement of water swollen in polymer networks of hydrogel to cryoprotectants (e.g., ethylene glycol, glycerol, and d-sorbitol). The organohydrogels swollen water-cryoprotectant binary systems can be recovered to their original shapes when be bent, folded and even twisted after being cooled down to a temperature as low as -20 and -45°C, due to lower vapor pressure and ice-inhibition of cryoprotectants. The physical organohydrogels exhibit the maximum stress (5.62 ± 0.41 MPa) and strain (7.63 ± 0.02), which is about 10 and 2 times of their original hydrogel, due to the synergistic effect of multiple hydrogen bonds, coordination bonds and dense polymer networks. Based on these features, such physically crosslinked organohydrogels with extreme toughness and wide temperature tolerance is a promising soft material expanding the applications of gels in more specific and harsh conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...