Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 194: 106838, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390993

RESUMO

Schizophrenia (SCZ) is a severe psychiatric disorder characterized by positive symptoms, negative symptoms, and cognitive deficits. Current antipsychotic treatment in SCZ improves positive symptoms but has major side effects and little impact on negative symptoms and cognitive impairment. The pathoetiology of SCZ remains unclear, but is known to involve small GTPase signaling. Rho kinase, an effector of small GTPase Rho, is highly expressed in the brain and plays a major role in neurite elongation and neuronal architecture. This study used a touchscreen-based visual discrimination (VD) task to investigate the effects of Rho kinase inhibitors on cognitive impairment in a methamphetamine (METH)-treated male mouse model of SCZ. Systemic injection of the Rho kinase inhibitor fasudil dose-dependently ameliorated METH-induced VD impairment. Fasudil also significantly suppressed the increase in the number of c-Fos-positive cells in the infralimbic medial prefrontal cortex (infralimbic mPFC) and dorsomedial striatum (DMS) following METH treatment. Bilateral microinjections of Y-27632, another Rho kinase inhibitor, into the infralimbic mPFC or DMS significantly ameliorated METH-induced VD impairment. Two proteins downstream of Rho kinase, myosin phosphatase-targeting subunit 1 (MYPT1; Thr696) and myosin light chain kinase 2 (MLC2; Thr18/Ser19), exhibited increased phosphorylation in the infralimbic mPFC and DMS, respectively, after METH treatment, and fasudil inhibited these increases. Oral administration of haloperidol and fasudil ameliorated METH-induced VD impairment, while clozapine had little effect. Oral administration of haloperidol and clozapine suppressed METH-induced hyperactivity, but fasudil had no effect. These results suggest that METH activates Rho kinase in the infralimbic mPFC and DMS, which leads to cognitive impairment in male mice. Rho kinase inhibitors ameliorate METH-induced cognitive impairment, perhaps via the cortico-striatal circuit.


Assuntos
Disfunção Cognitiva , Metanfetamina , Proteínas Monoméricas de Ligação ao GTP , Inibidores de Proteínas Quinases , Esquizofrenia , Animais , Masculino , Camundongos , Clozapina , Disfunção Cognitiva/tratamento farmacológico , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Behav Brain Res ; 416: 113569, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34499931

RESUMO

The Reelin gene (RELN) encodes a large extracellular protein, which has multiple roles in brain development and adult brain function. It activates a series of neuronal signal transduction pathways in the adult brain that function in synaptic plasticity, dendritic morphology, and cognitive function. To further investigate the roles of Reln in brain function, we generated a mouse line using the C57BL/6 J strain with the specific Reln deletion identified from a Japanese patient with schizophrenia (Reln-del mice). These mice exhibited abnormal sociality, but the pathophysiological significance of the Reln deletion for higher brain functions, such as learning and behavioral flexibility remains unclear. In this study, cognitive function in Reln-del mice was assessed using touchscreen-based visual discrimination (VD) and reversal learning (RL) tasks. Reln-del mice showed normal learning in the simple VD task, but the learning was delayed in the complex VD task as compared to their wild-type (WT) littermates. In the RL task, sessions were divided into early perseverative phase (sessions with <50% correct) and later learning phase (sessions with ≥50% correct). Reln-del mice showed normal perseveration but impaired relearning ability in both simple RL and complex RL task as compared to WT mice. These results suggest that Reln-del mice have impaired learning ability, but the behavioral flexibility is unaffected. Overall, the observed behavioral abnormalities in Reln-del mice suggest that this mouse model is a useful preclinical tool for investigating the neurobiological mechanism underlying cognitive impairments in schizophrenia and a therapeutic strategy.


Assuntos
Aprendizagem por Discriminação/fisiologia , Proteína Reelina/genética , Reversão de Aprendizagem/fisiologia , Esquizofrenia/genética , Percepção Visual/genética , Animais , Cognição/fisiologia , Modelos Animais de Doenças , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...