Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(9): 4438-4447, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096584

RESUMO

The Air Pollution Prevention and Control Action Plan and Three-year Plan on Defending the Blue Sky promulgated by the State Council of the People's Republic of China have played an important role in the overall improvement of air quality in China. However, few studies have evaluated the implementation effects of these two policies in Sichuan Basin and the new characteristics of PM2.5 chemical components after the implementation of these policies. The key periods for evaluating the implementation effects of these two pollution reduction policies are 2017 and 2020, respectively. In order to study the atmospheric PM2.5 and carbonaceous species in Chengdu during these two periods, this study sampled the PM2.5 in Chengdu from October 2016 to July 2017 and December 2020, respectively, and the organic carbon (OC) and elemental carbon (EC) were analyzed. The results showed that the annual ρ(PM2.5) from 2016-2017 in Chengdu was (114.0±76.4) µg·m-3. The maximum value of the ρ(PM2.5) appeared in winter[(193.3±98.5) µg·m-3], and the minimum value appeared in spring[(73.8±32.3) µg·m-3]. By contrast, the ρ(PM2.5) in winter decreased significantly in 2020, with a value of (96.0±39.3) µg·m-3. The annual ρ(OC) and ρ(EC) from 2016-2017 were (21.1±16.4) µg·m-3 and (1.9±1.3) µg·m-3, which accounted for 18.5% and 1.7% of the PM2.5 mass, respectively. The seasonal variation characteristic of ρ(OC) was:winter[(40.6±21.5) µg·m-3]>autumn[(17.0±7.0) µg·m-3]>summer[(14.4±3.9) µg·m-3]>spring[(12.6±6.0) µg·m-3], whereas the ρ(EC) in the four seasons were close, ranging from 1.3 to 2.4 µg·m-3. The annual ρ(SOC) was (9.4±9.1) µg·m-3, which accounted for 44.5% of the OC mass. Compared with that in winter 2016, the ρ(OC) decreased by 52.7% in winter 2020, whereas the ρ(EC) increased by 26.1%. With the aggravation of pollution, the change trends of carbon species and their contributions were different. Compared with that in winter 2016, the variation in the contribution of OC with the aggravation of pollution in winter 2020 was more stable, whereas the proportion of SOC increased more obviously. There were obvious differences in the direction of air masses and the potential source area of pollutants in each season. Although there was no significant change in the direction of air masses in winter 2020 compared with those in winter 2016, the pollutant concentrations corresponding to each cluster decreased significantly, and the potential source area of pollutants expanded significantly to the eastern area.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental/métodos , Humanos , Tamanho da Partícula , Material Particulado/análise
2.
Huan Jing Ke Xue ; 41(10): 4374-4381, 2020 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124369

RESUMO

To investigate the characteristics of carbonaceous species in PM2.5 in Beijing after the implementation of the Action Plan for the Prevention and Control of Air Pollution, PM2.5 was continuously sampled in the heavily polluted southern urban area of Beijing from December 2017 to December 2018. The characteristics of organic carbon (OC) and element carbon (EC) were then determined. The results showed that the annual concentrations of PM2.5, OC, and EC in Beijing varied in wide ranges of 4.2-366.3, 0.9-74.5, and 0.0-5.5 µg ·m-3, respectively, and the average mass concentration were (77.1±52.1), (11.2±7.8), and (1.2±0.8) µg ·m-3. Overall, the carbonaceous species (OC and EC) accounted for 16.1% of the PM2.5 mass. The seasonal characteristics of the OC mass concentrations were: winter [(13.8±8.7) µg ·m-3] > spring [(12.7±9.6) µg ·m-3] > autumn [(11.8±6.2) µg ·m-3] > summer [(6.5±2.1) µg ·m-3]. The concentration of the EC during the four seasons was low, ranging from 0.8 to 1.5 µg ·m-3. The annual average mass concentration and contribution of secondary organic carbon (SOC) were (5.4±5.8) µg ·m-3 and 48.2%, respectively, highlighting the significant contribution of the secondary process. With the aggravation of pollution, although the contribution proportion of OC and EC decreased, their mass concentrations during "heavily polluted" days were 6.3 and 3.2 times that of "excellent" days, respectively. Compare to non-heating period, the mass concentrations of PM2.5, OC, and SOC increased by 14.4%, 47.9%, and 72.1% in heating period, respectively, which emphasized the importance of carbonaceous species during heating periods. Potential source contribution function (PSCF) analysis showed that the southwest areas of Beijing (such as Shanxi and Henan province) were the main potential source areas of PM2.5 and OC. The high value area of the PSCF of EC was less and the main potential source area was in the south of Beijing (such as Shandong and Henan province).


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Carbono/análise , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...