Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 207: 117800, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741902

RESUMO

A collaborative system including peroxymonosulfate (PMS) activation in a photocatalytic fuel cell (PFC) with an BiOI/TiO2 nanotube arrays p-n type heterojunction as photoanode under visible light (PFC(BiOI/TNA)/PMS/vis system) was established. Xenon lamp was used as the light source of visible light. A 4.6 times higher pseudo-first-order bezafibrate (BZF) degradation rate constant was achieved in this system compared with the single PFC(BiOI/TNA)/vis system. The radical quenching experiments revealed that the contribution of reactive oxidative species (ROS) followed the order of 1O2 ≈ h+ >> •OH > SO4•- >>O2•-. The EPR tests demonstrated that PMS addition enlarged the formation of 1O2, •OH and SO4•-, but suppressed O2•- yield. Interestingly, 1O2 was further proved to dominantly originated from the priority reaction between positive photoinduced holes (h+) and negatively charged PMS. Besides, N2-purging tests and density functional theory calculation indicated that PMS probably reacted with residual photoinduced electron (e-) on the more negative conduction band (CB) of BiOI to form •OH and SO4•-, but competed with dissolved oxygen. Other e- transferred to the less negative CB of TNA through p-n junction will efficiently move to cathode through the external circuit. The greatly promoted power generation of PFC system was observed after PMS addition due to extra h+ consumption and efficient e- separation and transfer. Besides, three possible pathways for BZF degradation were proposed including hydroxylation, fibrate chain substituent and amino bond fracture. This study can provide new insights into the mechanisms of PMS assisted photocatalysis and accompanying energy recovery.


Assuntos
Bezafibrato , Nanotubos , Luz , Peróxidos
2.
Comput Math Methods Med ; 2019: 1989651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360215

RESUMO

In this paper, an infection model with delay and general incidence function is formulated and analyzed. Theoretical results reveal that positive equilibrium may lose its stability, and Hopf bifurcation occurs when choosing delay as the bifurcation parameter. The direction of Hopf bifurcation and the stability of the periodic solutions are also discussed. Furthermore, to illustrate the numerous changes in the local stability and instability of the positive equilibrium, we conduct numerical simulations by using four different types of functional incidence, i.e., bilinear incidence, saturation incidence, Beddington-DeAngelis response, and Hattaf-Yousfi response. Rich dynamics of the model, such as Hopf bifurcations and chaotic solutions, are presented numerically.


Assuntos
Doenças Transmissíveis/epidemiologia , Simulação por Computador , Incidência , Viroses/epidemiologia , Algoritmos , Número Básico de Reprodução , Humanos , Modelos Lineares , Fatores de Tempo , Viroses/transmissão , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...