Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 656: 46-52, 2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-36947966

RESUMO

Full-thickness skin wounds still represent a challenge for clinical treatment. Adipose-derived stem cells (ADSCs) therapy is a promising approach to achieve efficient healing in skin wounds. The excellent cell scaffold can promote proliferation, differentiation and paracrine of ADSCs in wound microenvironment, and is a key factor in ADSCs application. Herein, we first prepared the composite hydrogel with decellularized adipose tissue (DAT) and tremella polysaccharide (TPS), and loaded insulin (INS) into the DAT/TPS composite hydrogel (DAT/TPS-gel) to fabricate an efficient carrier for ADSCs in treating skin wound. Our study showed that INS modified DAT/TPS-gel (INS-DAT/TPS-gel) can promote the proliferation, differentiation and paracrine of ADSCs. INS-DAT/TPS-gel laden with ADSCs (ADSCs/INS-DAT/TPS-gel) effectively facilitated the skin wound healing in SD rats. These findings indicated that INS-DAT/TPS-gel was an effective scaffold for ADSCs transplantation, and ADSCs/INS-DAT/TPS-gel provides a potential strategy for the treatment of skin wounds.


Assuntos
Hidrogéis , Insulina , Ratos , Animais , Ratos Sprague-Dawley , Tecido Adiposo , Cicatrização , Pele/lesões
2.
Biomater Sci ; 11(3): 854-872, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36515094

RESUMO

Inadequate angiogenesis in diabetic wound healing has been identified as one of the most difficult issues to treat. Copper ions (Cu2+) have been confirmed to stimulate angiogenesis; nevertheless, the rapid rise in non-physiological Cu2+ concentrations increases the danger of ion poisoning. For the first time, biotin was used to stabilize a copper-based metal-organic framework (HKUST-1) to change its hydrophobicity and achieve sustained release of Cu2+. The inability to offer a suitable area for the dynamic interaction between cells and growth factors still restricts the use of nanomaterials for the regeneration of injured skin in diabetes. Acellular dermal matrix (ADM) scaffolds are collagen fibers with natural spatial tissue that can create a biological "niche" for cell attachment and growth. In this study, biotin-stabilized HKUST-1 (B-HKUST-1) nanoparticles were modified with an ADM to form a novel scaffold (ADM-B-HKUST-1). Notably, Cu2+ and mesenchymal stem cells (MSCs) released by the composite scaffold may synergistically promote MSC adhesion, proliferation and endothelial differentiation by upregulating the expression of transforming growth factor-ß (TGF-ß), vascular endothelial growth factor (VEGF) and alpha-smooth muscle actin (α-SMA). Overall, the ADM-B-HKUST1 scaffold combines the dual advantages of the sustained release of Cu2+ and creating a biological "niche" can provide a potential strategy for enhancing angiogenesis and promoting diabetic wound healing.


Assuntos
Derme Acelular , Diabetes Mellitus , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/metabolismo , Biotina , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cobre , Preparações de Ação Retardada/metabolismo , Alicerces Teciduais , Cicatrização , Diabetes Mellitus/metabolismo , Diferenciação Celular , Neovascularização Patológica/metabolismo
3.
Heliyon ; 8(8): e10370, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061010

RESUMO

Ceria-based nanomaterials have aroused major attentions among the biomedical application research field in recent years. Most of the researches have mainly focused on promoting the functional healing therapies of normal cells/organs with cerium oxide compounds, while the applications of ceria-based materials employed on cancer curing processes have been merely mentioned. To explore the possible capabilities of cerium oxide nanomaterials exterminating tumor cells, innovatively, we synthesized the eco-friendly pure cerium oxide nanodots (CNDs), proving the prominent ability of CNDs used in tumor chemotherapy (CDT) via Fenton reaction with the highly presence of H2O2 (acidic pH) in tumor tissues. CNDs reacted with the self-produced H2O2 of tumor cells, which generated piled up toxic hydroxyl radical (·OH). The accumulated virulent ·OH restrained the growth of cancer cells intensively. This peroxidase-like activity, provided a distinguished paradigm for effective cancer curing treatment. We also verified the biosafety of CNDs applied on normal cells. Notably, not only did CNDs be harmless to normal cells, but also it protected them from the damages of reactive oxygen species (ROS). In normal cells/tissues, under the microenvironment of neutral pH and low level of H2O2, the CNDs could effectively function as an annihilator inhibiting ROS. They reduced the damages caused by ROS, exhibiting catalase-like activity. The research we studied, which estimated CNDs thoroughly, has provided a new perspective to the future researches of the cerium oxide biomaterial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...