Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 31(8): 798-807, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21813515

RESUMO

Nitric oxide (NO) is an important signaling molecule involved in many physiological processes in plants. Nitric oxide generation and flavonoid accumulation are two early reactions of plants to ultraviolet-B (UV-B) irradiation. However, the source of UV-B-triggered NO generation and the role of NO in UV-B-induced flavonoid accumulation are not fully understood. In order to evaluate the origin of UV-B-triggered NO generation, we examined the responses of nitrate reductase (NR) activity and the expression levels of NIA1 and NIA2 genes in leaves of Betula pendula Roth (silver birch) seedlings to UV-B irradiation. The data show that UV-B irradiation stimulates NR activity and induces up-regulation of NIA1 but does not affect NIA2 expression during UV-B-triggered NO generation. Pretreatment of the leaves with NR inhibitors tungstate (TUN) and glutamine (Gln) abolishes not only UV-B-triggered NR activities but also UV-B-induced NO generation. Furthermore, application of TUN and Gln suppresses UV-B-induced flavonoid production in the leaves and the suppression of NR inhibitors on UV-B-induced flavonoid production can be reversed by NO via its donor sodium nitroprusside. Together, the data indicate that NIA1 in the leaves of silver birch seedlings is sensitive to UV-B and the UV-B-induced up-regulation of NIA1 may lead to enhancement of NR activity. Furthermore, our results demonstrate that NR is involved in UV-B-triggered NO generation and NR-mediated NO generation is essential for UV-B-induced flavonoid accumulation in silver birch leaves.


Assuntos
Betula/efeitos da radiação , Flavonoides/metabolismo , Nitrato Redutase/metabolismo , Óxido Nítrico/metabolismo , Betula/enzimologia , Betula/genética , Nitrato Redutase/genética , Folhas de Planta/enzimologia , Folhas de Planta/efeitos da radiação , Plântula/enzimologia , Plântula/efeitos da radiação , Raios Ultravioleta
2.
J Integr Plant Biol ; 50(1): 92-101, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18666956

RESUMO

Secondary metabolites not only play important ecological roles in plants but also are important pharmaceutical and source compounds for derivative synthesis. Production of plant secondary metabolites is believed to be controlled by the endogenous signal network of plants. However, the molecular basis is still largely unknown. Here we show that matrine production of Sophora flavescens Ait. cells treated with low levels of jasmonic acid (JA) and nitric oxide (NO) is significantly increased although treatment with low concentrations of JA or NO alone has no effects on matrine production, showing that JA and NO may act synergistically in triggering matrine production. Moreover, treatment with NO triggers lipoxygenase (LOX) activity and enhances JA levels of the cells, showing that NO may activate the endogenous JA biosynthesis of S. flavescens cells. External application of JA induces nitric oxide synthase-like activities and stimulates NO generation of S. flavescens cells, which suggests that JA may trigger NO generation of the cells. Thus, the results reveal a mutually amplifying reaction between JA and NO in S. flavescens cells. Furthermore, JA and NO inhibitors suppress not only the mutually amplifying reaction between JA and NO but also the synergistic effects of NO and JA on matrine production. Therefore, the data demonstrate that the synergistic action of JA and NO in inducing matrine production might be due to the mutually amplifying reaction between JA and NO in the cells.


Assuntos
Alcaloides/metabolismo , Ciclopentanos/farmacologia , Óxido Nítrico/metabolismo , Oxilipinas/farmacologia , Quinolizinas/metabolismo , Sophora/efeitos dos fármacos , Ciclopentanos/metabolismo , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Lipoxigenase/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Nitroprussiato/metabolismo , Nitroprussiato/farmacologia , Oxilipinas/metabolismo , Sophora/citologia , Sophora/metabolismo , Matrinas
3.
Plant Physiol ; 139(2): 991-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16169960

RESUMO

Fungal elicitor prepared from the cell walls of Aspergillum niger induces multiple responses of Hypericum perforatum cells, including nitric oxide (NO) generation, jasmonic acid (JA) biosynthesis, and hypericin production. To determine the role of NO and JA in elicitor-induced hypericin production, we study the effects of NO scavenger 2- to 4-carboxyphenyl-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO), nitric oxide synthase inhibitor S,S'-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea, and inhibitors of the octadecanoid pathway on elicitor-induced NO generation, JA biosynthesis, and hypericin production. Pretreatment of the cells with cPITO and JA biosynthesis inhibitors suppresses not only the elicitor-induced NO generation and JA accumulation but also the elicitor-induced hypericin production, which suggests that both NO and JA are involved in elicitor-induced hypericin biosynthesis. S,S'-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea and cPITO inhibit both elicitor-induced NO generation and JA biosynthesis, while JA biosynthesis inhibitors do not affect the elicitor-induced NO generation, indicating that JA acts downstream of NO generation and that its biosynthesis is regulated by NO. External application of NO via its donor sodium nitroprusside induces hypericin production in the absence of fungal elicitor. Sodium-nitroprusside-induced hypericin production is blocked by JA biosynthesis inhibitors, showing that JA biosynthesis is essential for NO-induced hypericin production. The results demonstrate a causal relationship between elicitor-induced NO generation, JA biosynthesis, and hypericin production in H. perforatum cells and indicate a sequence of signaling events from NO to hypericin production, within which NO mediates the elicitor-induced hypericin biosynthesis at least partially via a JA-dependent signaling pathway.


Assuntos
Ciclopentanos/metabolismo , Hypericum/metabolismo , Óxido Nítrico/metabolismo , Perileno/análogos & derivados , Antracenos , Aspergillus niger , Células Cultivadas , Proteínas Fúngicas/farmacologia , Hypericum/citologia , Hypericum/efeitos dos fármacos , Oxilipinas , Perileno/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Transdução de Sinais
4.
Sheng Wu Gong Cheng Xue Bao ; 21(1): 66-70, 2005 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-15859331

RESUMO

Nitric oxide has emerged as a key signaling molecule in plants recently. The role of nitric oxide in elicitor-induced defense responses of plants has been extensively investigated. In this work, sodium nitroprusside was utilized as the donor of nitric oxide to investigate the effects of exogenous nitric oxide on hypericin production and cell growth of suspension cell cultures of Hypericum perforatum L.. Compared with the untreated Hypericum perforatum L. suspension cells, external application of 0.5 and 15.0 mmol/L sodium nitroprusside induced 1.4 and 0.5-fold dry cell weight, and 0.9 and 2.1-fold hypericin content respectively. The results showed that low concentration of sodium nitroprusside promoted the growth of Hypericum perforatum L. suspension cells, while high concentration of sodium nitroprusside enhanced hypericin biosynthesis in Hypericum perforatum L. suspension cells. The maximum hypericin production was achieved by adding 0.5 mmol/L and 15.0 mmol/L sodium nitroprusside to the culture at day 0 and day 14 respectively, increasing the total hypericin yield by nearly 3.2-fold. The effects of sodium nitroprusside on hypericin content and growth of Hypericum perforatum L. suspension cells were abolished by nitric oxide specific scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, which indicated that the effects of the application of sodium nitroprusside were caused by nitric oxide released from sodium nitroprusside rather than sodium nitroprusside itself. The results also showed that 15.0 mmol/L sodium nitroprusside stimulated the activities of phenylalanine ammonia-lyase (PAL), one of the key enzymes of phenylpropanoid pathway, in suspension cells of Hypericum perforatum L., which suggested that the synthetic pathway of hypericin might be activated by NO through triggering the defense responses of Hypericum perforatum L. suspension cells.


Assuntos
Hypericum/citologia , Hypericum/metabolismo , Óxido Nítrico/metabolismo , Perileno/análogos & derivados , Antracenos , Células Cultivadas , Hypericum/efeitos dos fármacos , Nitroprussiato/farmacologia , Perileno/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Plantas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...