Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(3): e0121423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38364095

RESUMO

The intestine plays a pivotal role in nutrient absorption and host defense against pathogens, orchestrated in part by antimicrobial peptides secreted by Paneth cells. Among these peptides, lysozyme has multifaceted functions beyond its bactericidal activity. Here, we uncover the intricate relationship between intestinal lysozyme, the gut microbiota, and host metabolism. Lysozyme deficiency in mice led to altered body weight, energy expenditure, and substrate utilization, particularly on a high-fat diet. Interestingly, these metabolic benefits were linked to changes in the gut microbiota composition. Cohousing experiments revealed that the metabolic effects of lysozyme deficiency were microbiota-dependent. 16S rDNA sequencing highlighted differences in microbial communities, with ASTB_g (OTU60) highly enriched in lysozyme knockout mice. Subsequently, a novel bacterium, ASTB Qing110, corresponding to ASTB_g (OTU60), was isolated. Metabolomic analysis revealed that ASTB Qing110 secreted high levels of NAD+, potentially influencing host metabolism. This study sheds light on the complex interplay between intestinal lysozyme, the gut microbiota, and host metabolism, uncovering the potential role of ASTB Qing110 as a key player in modulating metabolic outcomes. IMPORTANCE: The impact of intestinal lumen lysozyme on intestinal health is complex, arising from its multifaceted interactions with the gut microbiota. Lysozyme can both mitigate and worsen certain health conditions, varying with different scenarios. This underscores the necessity of identifying the specific bacterial responses elicited by lysozyme and understanding their molecular foundations. Our research reveals that a deficiency in intestinal lysozyme1 may offer protection against diet-induced obesity by altering bacterial populations. We discovered a strain of bacterium, ASTB Qing110, which secretes NAD+ and is predominantly found in lyz1-deficient mice. Qing110 demonstrates positive effects in both C. elegans and mouse models of ataxia telangiectasia. This study sheds light on the intricate role of lysozyme in influencing intestinal health.


Assuntos
Microbiota , Muramidase , Animais , Camundongos , Muramidase/genética , NAD , Caenorhabditis elegans , Intestinos/microbiologia , Bactérias , Dieta Hiperlipídica/efeitos adversos
2.
Mediators Inflamm ; 2019: 7898095, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736656

RESUMO

Accumulated evidences show that neuroinflammation play a pivotal role in the pathogenesis of depression. Neuropeptide Y (NPY) and its receptors have been demonstrated to have anti-inflammative as well as antidepressant effects. In the present study, the ability of NPY to modulate depressive-like behaviors induced by lipopolysaccharides (LPS) in rats and the receptors and signaling mechanisms involved were investigated. Continuous injection LPS (i.p) for 4 days led to development of depressive-like behaviors in rats, accompanied with M1-type microglia activation and increased levels of IL-1ß as well as decreased levels of NPY and Y2R expression in the mPFC selectively. Local injection of NPY into the medial prefrontal cortex (mPFC) ameliorated the depression-like behaviors and suppressed the NLRP3 inflammasome signaling pathway. Y2R agonist PYY (3-36) mimicked and Y2R antagonist BIIE0246 abolished the NPY effects in the mPFC. All these results suggest that NPY and Y2R in the mPFC are involved in the pathophysiology of depression and NPY plays an antidepressant role in the mPFC mainly via Y2R, which suppresses the NLRP3 signaling pathway, in LPS-induced depression model rats.


Assuntos
Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Western Blotting , Depressão/metabolismo , Interleucina-1beta/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...