Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0286024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531364

RESUMO

Image fusion technology is employed to integrate images collected by utilizing different types of sensors into the same image to generate high-definition images and extract more comprehensive information. However, all available techniques derive the features of the images by utilizing each sensor separately, resulting in poorly correlated image features when different types of sensors are utilized during the fusion process. The fusion strategy to make up for the differences between features alone is an important reason for the poor clarity of fusion results. Therefore, this paper proposes a fusion method via information clustering and image features (ICIF). First, the weighted median filter algorithm is adopted in the spatial domain to realize the clustering of images, which uses the texture features of an infrared image as the weight to influence the clustering results of the visible light image. Then, the image is decomposed into the base layer, bright detail layer, and dark detail layer, which improves the correlations between the layers after conducting the decomposition of a source graph. Finally, the characteristics of the images collected by utilizing sensors and feature information between the image layers are used as the weight reference of the fusion strategy. Hence, the fusion images are reconstructed according to the principle of extended texture details. Experiments on public datasets demonstrate the superiority of the proposed strategy over state-of-the-art methods. The proposed ICIF highlighted targets and abundant details as well. Moreover, we also generalize the proposed ICIF to fuse images with different sensors, e.g., medical images and multi-focus images.


Assuntos
Algoritmos , Luz , Processamento de Imagem Assistida por Computador/métodos
2.
PLoS One ; 17(12): e0278055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584047

RESUMO

Multi-scale image decomposition is crucial for image fusion, extracting prominent feature textures from infrared and visible light images to obtain clear fused images with more textures. This paper proposes a fusion method of infrared and visible light images based on spatial domain and image features to obtain high-resolution and texture-rich images. First, an efficient hierarchical image clustering algorithm based on superpixel fast pixel clustering directly performs multi-scale decomposition of each source image in the spatial domain and obtains high-frequency, medium-frequency, and low-frequency layers to extract the maximum and minimum values of each source image combined images. Then, using the attribute parameters of each layer as fusion weights, high-definition fusion images are through adaptive feature fusion. Besides, the proposed algorithm performs multi-scale decomposition of the image in the spatial frequency domain to solve the information loss problem caused by the conversion process between the spatial frequency and frequency domains in the traditional extraction of image features in the frequency domain. Eight image quality indicators are compared with other fusion algorithms. Experimental results show that this method outperforms other comparative methods in both subjective and objective measures. Furthermore, the algorithm has high definition and rich textures.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Raios Infravermelhos
3.
PLoS One ; 16(2): e0245563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606680

RESUMO

Aiming at the situation that the existing visible and infrared images fusion algorithms only focus on highlighting infrared targets and neglect the performance of image details, and cannot take into account the characteristics of infrared and visible images, this paper proposes an image enhancement fusion algorithm combining Karhunen-Loeve transform and Laplacian pyramid fusion. The detail layer of the source image is obtained by anisotropic diffusion to get more abundant texture information. The infrared images adopt adaptive histogram partition and brightness correction enhancement algorithm to highlight thermal radiation targets. A novel power function enhancement algorithm that simulates illumination is proposed for visible images to improve the contrast of visible images and facilitate human observation. In order to improve the fusion quality of images, the source image and the enhanced images are transformed by Karhunen-Loeve to form new visible and infrared images. Laplacian pyramid fusion is performed on the new visible and infrared images, and superimposed with the detail layer images to obtain the fusion result. Experimental results show that the method in this paper is superior to several representative image fusion algorithms in subjective visual effects on public data sets. In terms of objective evaluation, the fusion result performed well on the 8 evaluation indicators, and its own quality was high.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Raios Infravermelhos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...