Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1187574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727787

RESUMO

Background: We aimed to use transcriptomics, bioinformatics analysis, and core gene validation to identify the core gene and potential mechanisms for electroacupuncture (EA) treatment of ulcerative colitis (UC). Materials and methods: EA was performed in mice after induction of UC via dextran sodium sulfate. Body weight, disease activity index (DAI), colon length, and hematoxylin-eosin of the colon tissue were used to evaluate the effects of EA. Mice transcriptome samples were analyzed to identify the core genes, and further verified with human transcriptome database; the ImmuCellAI database was used to analyze the relationship between the core gene and immune infiltrating cells (IICs); and immunofluorescence was used to verify the results. Results: EA could reduce DAI and histological colitis scores, increase bodyweight and colon length, and improve the expression of local and systemic proinflammatory factors in the serum and colon of UC mice. Eighteen co-differentially expressed genes were identified by joint bioinformatics analyses of mouse and human transcriptional data; Cxcl1 was the core gene. EA affected IICs by inhibiting Cxcl1 expression and regulated the polarization of macrophages by affecting the Th1 cytokine IFN-γ, inhibiting the expression of CXCL1. Conclusions: CXCL1 is the target of EA, which is associated with the underlying immune mechanism related to Th1 cytokine IFN-γ.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Humanos , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , Transcriptoma , Citocinas , Peso Corporal , Quimiocina CXCL1
2.
Exp Biol Med (Maywood) ; 248(14): 1229-1241, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37438919

RESUMO

The aim of this study was to elucidate the key targets of acupuncture in the colon of ulcerative colitis (UC) mice model using full-length transcriptome sequencing. 2.5% dextran sodium sulfate (DSS)-induced colitis mice were treated with or without acupuncture. Intestinal pathology was observed, and full transcriptome sequencing and bioinformatic analysis were performed. The results demonstrated that acupuncture treatment reduced the UC symptoms, disease activity index score, and histological colitis score and increased body weight, colon length, and the number of intestinal goblet cells. In addition, acupuncture can also decrease the expression of necrotic biomarker phosphorylates mixed lineage kinase domain-like pseudo kinase (p-MLKL). Full-length transcriptome analysis indicated that acupuncture reversed the expression of 987 of the 1918 upregulated differentially expressed genes (DEGs), and 632 of the 1351 downregulated DEGs induced by DSS. DEGs regulated by acupuncture were mainly involved in inflammatory responses and intestinal barrier pathways. The protein-protein interaction network analysis revealed that matrix metalloproteinases (MMPs) are important genes regulated by acupuncture. Gene set enrichment analysis revealed that extracellular matrix (ECM)-receptor interaction was an important target of acupuncture. In addition, alternative splicing analysis suggested that acupuncture improved signaling pathways related to intestinal permeability, the biological processes of xenobiotics, sulfur compounds, and that monocarboxylic acids are closely associated with MMPs. Overall, our transcriptome analysis results indicate that acupuncture improves intestinal barrier function in UC through negative regulation of MMPs expression.


Assuntos
Terapia por Acupuntura , Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/terapia , Colite Ulcerativa/metabolismo , Colite/induzido quimicamente , Colo/metabolismo , Metaloproteinases da Matriz/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Zhen Ci Yan Jiu ; 48(2): 158-64, 2023 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-36858412

RESUMO

OBJECTIVE: To observe the protective effect of electroacupuncture (EA) on the intestinal mucosal barrier and its relationship with the Notch/NF-κB signaling pathway in mice with ulcerative colitis (UC), so as to explore its mechanism of treating UC. METHODS: Male C57BL/6J mice were randomized into control, model and EA groups, with 6 mice in each group. The UC model was established by giving the mice with 2% Dextran Sulfate Sodium (DSS) for 7 days. EA (2 Hz/15 Hz, 0.2 mA) was applied at bilateral "Zusanli" (ST36) for 30 min, once a day for 7 days. The disease activity indexes ï¼»DAI=(body weight index score+stool score+bleeding score)/3; 0-4 pointsï¼½ of mice were calculated. The morphological changes of colonic tissues of mice in each group were observed by HE staining, and serum contents of TNF-α and IL-6 were detected by ELISA. Claudin-1 protein expression in colon tissue was detected by immunofluorescence, while the protein expression levels of Muc-2, Notch-1, MMP-9 in colon tissue were detected by immunohistochemistry. The real-time PCR method was used to detect the expression levels of Notch-1, Hes-1, NF-κB, TLR-4 and AKT mRNA in colon tissues. RESULTS: After modeling, the DAI, serum TNF-α and IL-6 contents, Notch-1 and MMP-9 protein expression, the relative expression levels of Notch-1, Hes-1, NF-κB, TLR-4 and AKT mRNA in the colonic tissue were significantly increased (P<0.001, P<0.01) in the model group relevant to the control group. At the same time, Claudin-1 and Muc-2 protein expression were significantly reduced (P<0.01). After the EA intervention, the increased DAI score, TNF-α and IL-6 contents, Notch-1 and MMP-9 protein expression, the relative expressions of Notch-1, Hes-1, NF-κB, TLR-4 and AKT mRNA, and the decreased Claudin-1 and Muc-2 protein expression were all reversed compared with the model group (P<0.05, P<0.01, P<0.001). H.E. staining of the colonic tissue showed damage and infiltration of inflammatory cells in the model group, and those were significantly improved in the EA group. CONCLUSION: EA can promote the recovery of intestinal mucosal barrier function and reduce inflammatory reaction in UC mice, which may be associated with its effects in inhibiting the excessive activation of the Notch/NF-κB signaling pathway.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Metaloproteinase 9 da Matriz , Claudina-1 , Interleucina-6 , Proteínas Proto-Oncogênicas c-akt , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa , Transdução de Sinais
4.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982725

RESUMO

Emerging evidence shows that peripheral systemic inflammation, such as inflammatory bowel disease (IBD), has a close even interaction with central nervous disorders such as Alzheimer's disease (AD). This study is designed to further clarify the relationship between AD and ulcerative colitis (UC, a subclass of IBD). The GEO database was used to download gene expression profiles for AD (GSE5281) and UC (GSE47908). Bioinformatics analysis included GSEA, KEGG pathway, Gene Ontology (GO), WikiPathways, PPI network, and hub gene identification. After screening the shared genes, qRT-PCR, Western blot, and immunofluorescence were used to verify the reliability of the dataset and further confirm the shared genes. GSEA, KEGG, GO, and WikiPathways suggested that PPARG and NOS2 were identified as shared genes and hub genes by cytoHubba in AD and UC and further validated via qRT-PCR and Western blot. Our work identified PPARG and NOS2 are shared genes of AD and UC. They drive macrophages and microglia heterogeneous polarization, which may be potential targets for treating neural dysfunction induced by systemic inflammation and vice versa.


Assuntos
Doença de Alzheimer , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Microglia , Colite Ulcerativa/genética , PPAR gama/genética , Doença de Alzheimer/genética , Reprodutibilidade dos Testes , Macrófagos , Inflamação , Biologia Computacional , Óxido Nítrico Sintase Tipo II/genética
5.
Front Pharmacol ; 14: 1112758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825149

RESUMO

This review outlined evidence that purinergic signaling is involved in the modulation of blood-brain barrier (BBB) permeability. The functional and structural integrity of the BBB is critical for maintaining the homeostasis of the brain microenvironment. BBB integrity is maintained primarily by endothelial cells and basement membrane but also be regulated by pericytes, neurons, astrocytes, microglia and oligodendrocytes. In this review, we summarized the purinergic receptors and nucleotidases expressed on BBB cells and focused on the regulation of BBB permeability by purinergic signaling. The permeability of BBB is regulated by a series of purinergic receptors classified as P2Y1, P2Y4, P2Y12, P2X4, P2X7, A1, A2A, A2B, and A3, which serve as targets for endogenous ATP, ADP, or adenosine. P2Y1 and P2Y4 antagonists could attenuate BBB damage. In contrast, P2Y12-mediated chemotaxis of microglial cell processes is necessary for rapid closure of the BBB after BBB breakdown. Antagonists of P2X4 and P2X7 inhibit the activation of these receptors, reduce the release of interleukin-1 beta (IL-1ß), and promote the function of BBB closure. In addition, the CD39/CD73 nucleotidase axis participates in extracellular adenosine metabolism and promotes BBB permeability through A1 and A2A on BBB cells. Furthermore, A2B and A3 receptor agonists protect BBB integrity. Thus, the regulation of the BBB by purinergic signaling is complex and affects the opening and closing of the BBB through different pathways. Appropriate selective agonists/antagonists of purinergic receptors and corresponding enzyme inhibitors could modulate the permeability of the BBB, effectively delivering therapeutic drugs/cells to the central nervous system (CNS) or limiting the entry of inflammatory immune cells into the brain and re-establishing CNS homeostasis.

6.
Front Genet ; 13: 951243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061211

RESUMO

Background: Ulcerative colitis (UC) is a common chronic disease of the digestive system. Recently, competitive endogenous RNAs (ceRNAs) have been increasingly used to reveal key mechanisms for the pathogenesis and treatment of UC. However, the role of ceRNA in UC pathogenesis has not been fully clarified. This study aimed to explore the mechanism of the lncRNA-miRNA-mRNA ceRNA network in UC and identify potential biomarkers and therapeutic targets. Materials and Methods: An integrative analysis of mRNA, microRNA (miRNA), and long non-coding RNA (lncRNA) files downloaded from the Gene Expression Omnibus (GEO) was performed. Differentially expressed mRNA (DE-mRNAs), miRNA (DE-miRNAs), and lncRNA (DE-lncRNAs) were investigated between the normal and UC groups by the limma package. A weighted correlation network analysis (WGCNA) was used to identify the relative model for constructing the ceRNA network, and, concurrently, miRWalk and DIANA-LncBase databases were used for target prediction. Consecutively, the Gene Ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway, and Reactome pathway enrichment analyses, protein-protein interaction (PPI) network, Cytohubba, and ClueGO were performed to identify hub genes. Additionally, we examined the immune infiltration characteristics of UC and the correlation between hub genes and immune cells using the immuCellAI database. Finally, the expression of potential biomarkers of ceRNA was validated via qRT-PCR in an experimental UC model induced by dextran sulfate sodium (DSS). Result: The ceRNA network was constructed by combining four mRNAs, two miRNAs, and two lncRNAs, and the receiver operating characteristic (ROC) analysis showed that two mRNAs (CTLA4 and STAT1) had high diagnostic accuracy (area under the curve [AUC] > 0.9). Furthermore, CTLA4 up-regulation was positively correlated with the infiltration of immune cells. Finally, as a result of this DSS-induced experimental UC model, CTLA4, MIAT, and several associate genes expression were consistent with the results of previous bioinformatics analysis, which proved our hypothesis. Conclusion: The investigation of the ceRNA network in this study could provide insight into UC pathogenesis. CTLA4, which has immune-related properties, can be a potential biomarker in UC, and MIAT/miR-422a/CTLA4 ceRNA networks may play important roles in UC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...