Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675458

RESUMO

Acute alcoholic liver disease (ALD) resulting from short-term heavy alcohol consumption has become a global health concern. Moreover, anthocyanins have attracted much attention for their ability to prevent oxidation and inflammation. The present work evaluates the protective effects of Lycium ruthenicum Murray (LRM) against ALD and explores the possible underlying mechanism involved. The total anthocyanin content in LRM was 43.64 ± 9.28 Pt g/100 g dry weight. Mice were orally administered 50, 125, or 375 mg LRM/kg body weight (BW) for 21 days. On days 18-21, mice were orally administered 15 mL of ethanol/kg BW. Markers of liver damage, oxidative stress, and inflammation were examined. Furthermore, the modulatory effect of LRM on Nrf2/HO-1/NF-κB pathway molecules was evaluated through quantitative reverse transcription polymerase chain reaction (RT‒qPCR) and immunohistochemistry analyses. The difference between the groups indicated that LRM improved liver histopathology and the liver index, decreased aspartate transaminase, alanine transaminase, malondialdehyde, reactive oxygen species, IL-6, TNF-α, and IL-1ß expression, but elevated superoxide dismutase, catalase, and glutathione-s-transferase levels. Moreover, LRM upregulated Nrf2 and Ho-1 but downregulated Nf-κb and Tnf-α genes at the transcript level. In summary, LRM alleviated ethanol-induced ALD in mice by reducing oxidative damage and associated inflammatory responses. LRM protects against ALD by reducing damage factors and enhancing defense factors, especially via the Nrf2/HO-1/NF-κB pathway. Thus, LRM has application potential in ALD prophylaxis and treatment.

2.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543108

RESUMO

Cadmium (Cd) is a hazardous heavy metal environmental pollutant that has carcinogenic, teratogenic, and mutagenic properties. Excessive exposure to Cd can induce oxidative stress, which greatly harms the male reproductive system. Anthocyanins have remarkable antioxidative, anti-inflammatory, and anti-stress properties. In this study, we investigated the effects of anthocyanins and the underlying mechanisms through which anthocyanins mitigate Cd-induced reproductive damage. We isolated and purified Lycium ruthenicum Murray anthocyanin extract (LAE) and performed UHPLC-MS/MS to identify 30 different anthocyanins. We established an ICR mouse Cd injury model by administering 5 mg/kg/day CdCl2 for 28 consecutive days. LAE at 500 mg/kg/day effectively ameliorated testicular damage and preserved spermatogenesis. The mice in the LAE-treated group had elevated testosterone and inhibin B levels. Additionally, the treatment restored the activity of antioxidant enzymes, including T-SOD, CAT, and GR, and substantially increased the levels of the non-enzymatic antioxidant GSH. Research findings indicate that LAE can activate the SIRT1/Nrf2/Keap1 antioxidant pathway. This activation is achieved through the upregulation of both the SIRT1 gene and protein levels, leading to the deacetylation of Nrf2. Moreover, LAE reduces the expression of Keap1, alleviating its inhibitory effect on Nrf2. This, in turn, facilitates the uncoupling process, promoting the translocation of Nrf2 to the nucleus, where it governs downstream expression, including that of HO-1 and GPX1. LAE effectively mitigated toxicity to the reproductive system associated with exposure to the heavy metal Cd by alleviating oxidative stress in the testes.

3.
Molecules ; 28(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38138618

RESUMO

In this study, we designed and developed a DOX nanodrug delivery system (PEG-GA@ZIF-8@DOX) using ZIF-8 as the carrier and glycyrrhetinic acid (GA) as the targeting ligand. We confirmed that DOX was loaded and PEG-GA was successfully modified on the surface of the nanoparticles. The in vitro release profile of the system was investigated at pH 5.0 and 7.4. The cellular uptake, in vitro cytotoxicity, and lysosomal escape characteristics were examined using HepG2 cells. We established an H22 tumor-bearing mouse model and evaluated the in vivo antitumor activity. The results showed that the system had a uniform nanomorphology. The drug loading capacity was 11.22 ± 0.87%. In acidic conditions (pH 5.0), the final release rate of DOX was 57.73%, while at pH 7.4, it was 25.12%. GA-mediated targeting facilitated the uptake of DOX by the HepG2 cells. PEG-GA@ZIF-8@DOX could escape from the lysosomes and release the drug in the cytoplasm, thus exerting its antitumor effect. When the in vivo efficacy was analyzed, we found that the tumor inhibition rate of PEG-GA@ZIF-8@DOX was 67.64%; it also alleviated the loss of the body weight of the treated mice. This drug delivery system significantly enhanced the antitumor effect of doxorubicin in vitro and in vivo, while mitigating its toxic side effects.


Assuntos
Ácido Glicirretínico , Neoplasias Hepáticas , Camundongos , Animais , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Sistemas de Liberação de Medicamentos/métodos
4.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080252

RESUMO

Dihydromyricetin (DHM) has garnered attention due to its promising antitumor activity, but its low bioavailability restricts its clinical application. Thus, developing nano-drug delivery systems could enhance its antitumor activity. We prepared DHM@ZIF-8 nanoparticles using the zeolite imidazole framework-8 (ZIF-8) as a carrier loaded with dihydromyricetin. A series of characterizations were performed, including morphology, particle size, zeta potential, X-single crystal diffraction, ultraviolet spectroscopy, infrared spectroscopy, and Brunauer-Emmett-Teller (BET). The in vitro release characteristics of DHM@ZIF-8 under pH = 5.0 and pH = 7.4 were studied using membrane dialysis. The antitumor activity and pro-apoptotic mechanism of DHM@ZIF-8 were investigated through CCK-8 assay, reactive oxygen species (ROS), Annexin V/PI double-staining, transmission electron microscopy, and Western blot. The results depicted that DHM@ZIF-8 possessed a regular morphology with a particle size of 211.07 ± 9.65 nm (PDI: 0.19 ± 0.06) and a Zeta potential of -28.77 ± 0.67 mV. The 24 h drug releasing rate in PBS solution at pH = 7.4 was 32.08% and at pH = 5.0 was 85.52% in a simulated tumor micro acid environment. DHM@ZIF-8 could significantly enhance the killing effect on HepG2 cells compared to the prodrug. It can effectively remove ROS from the tumor cells, promote apoptosis, and significantly affect the expression of apoptosis-related proteins within tumor cells.


Assuntos
Zeolitas , Flavonóis , Células Hep G2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Diálise Renal , Zeolitas/química , Zeolitas/farmacologia
5.
Front Pharmacol ; 13: 832789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185586

RESUMO

The present study aimed to explore the protective effect and molecular mechanisms of Trichilia catigua A. Juss. extract (TCE) against di (2-ethylhexyl) phthalate (DEHP)-induced damage to the reproductive system of mice. Acute toxicity tests revealed that the maximum tolerated dose (MTD) in mice was up to 2.7 g kg-1. After induction with DEHP, TCE (L-TCE, M-TCE, H-TCE) was orally administered to mice for 28 days. Differences in indicators among groups showed that TCE significantly improved the anogenital distance and the organ indexes of the epididymides and testes. It also significantly reduced varicocele and interstitial cell lesions compared to the model group. H-TCE reduced the sperm abnormality rate, increased the levels of sex hormones, Na+K+ and Mg2+, Ca2+-ATPase enzyme activity, antioxidant enzyme vitality, coupled with a significant decrease in LH and MDA contents. The levels of testicular marker enzymes ACP and LDH were significantly augmented by both M-TCE and H-TCE. Further studies claimed that DEHP induction reduced the mRNA expression levels of Nrf2, SOD2, SOD3, CDC25C CDK1, CYP11A1, 3ß-HSD, 5ɑ-R, AR, SF1, and CYP17A1, increased the level of Keap1, while TCE reversed the expression levels of these genes. Meanwhile, IHC results demonstrated a significant change in the expression activity of the relevant proteins compared to the control group. The results suggest that M-TCE and H-TCE enabled the recovery of DEHP-induced reproductive system damage in male mice by improving testicular histopathology, repairing testicular function, and reducing oxidative stress damage. The oxidation-related Keap1-Nrf2 pathway, SODs enzyme, the cell cycle control-related CDC25C-CDK1 pathway, and the steroidogenic-related pathway may contribute to this protective effects of TCE.

6.
Int J Nanomedicine ; 16: 8337-8352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992370

RESUMO

BACKGROUND: Baicalin (BAN) has attracted widespread attention due to its low-toxicity and efficient antitumor activity, but its poor water solubility and low bioavailability severely limit its clinical application. Development of a targeted drug delivery system is a good strategy to improve the antitumor activity of baicalin. METHODS: We prepared a BAN nano-drug delivery system PEG-FA@ZIF-8@BAN with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR). We characterized this system in terms of morphology, particle size, zeta-potential, infrared (IR), ultraviolet (UV), x-ray diffraction (XRD), and Brunel-Emmett-Teller (BET), and examined the in vitro cytotoxicity and cellular uptake properties of PEG-FA@ZIF-8@BAN using MCF-7 cells. Lastly, we established a 4T1 tumor-bearing mouse model and evaluated its in vivo anti-mammary cancer activity. RESULTS: The PEG-FA@ZIF-8@BAN nano-delivery system had good dispersion with a BAN loading efficiency of 41.45 ± 1.43%, hydrated particle size of 176 ± 8.1 nm, Zeta-potential of -23.83 ± 1.1 mV, and slow and massive drug release in an acidic environment (pH 5.0), whereas release was 11.03% in a neutral environment (pH 7.4). In vitro studies showed that PEG-FA@ZIF-8@BAN could significantly enhance the killing effect of BAN on MCF-7 cells, and the folic acid-mediated targeting could lead to better uptake of nanoparticles by tumor cells and thus better killing of cancer cells. In vivo studies also showed that PEG-FA@ZIF-8@BAN significantly increased the inhibition of the proliferation of solid breast cancer tumors (p < 0.01 or p < 0.001). CONCLUSION: The PEG-FA@ZIF-8@BAN nano-drug delivery system significantly enhanced the anti-breast cancer effect of baicalin both in vivo and in vitro, providing a more promising drug delivery system for the clinical applications and tumor management.


Assuntos
Neoplasias da Mama , Nanopartículas , Zeolitas , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Flavonoides , Ácido Fólico/uso terapêutico , Humanos , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...