Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15144, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704682

RESUMO

Family with sequence similarity three member (FAM3) plays a crucial role in the malignant development of various cancers of human. However, there remains doubtful what specific role of FAM3 family genes in pan-cancer. Our study aimed to investigate the role of FAM3 family genes in prognosis, immune subtype, tumor immune microenvironment, stemness score, and anticancer drug sensitivity of pan-cancer. We obtained data from UCSC Xena GDC and CellMiner databases, and used them to study the correlation of the expression, survival, immune subtype, tumor microenvironment, stemness score, and anticancer drug sensitivity between FAM3 family genes with pan-cancer. Furthermore, we investigated the tumor cellular functions and clinical prognostic value FAMC3 in pancreatic cancer (PAAD) using cellular experiments and tissue microarray. Cell Counting Kit-8 (CCK-8), transwell invasion, wound-healing and apoptosis assays were performed to study the effect of FAM3C on SW1990 cells' proliferation, migration, invasion and apoptosis. Immunohistochemical staining was used to study the relationship between FAM3C expression and clinical characteristics of pancreatic cancer patients. The results revealed that FAM3 family genes are significantly differential expression in tumor and adjacent normal tissues in 7 cancers (CHOL, HNSC, KICH, LUAD, LUSC, READ, and STAD). The expression of FAM3 family genes were negatively related with the RNAss, and robust correlated with immune type, tumor immune microenvironment and drug sensitivity. The expression of FAM3 family genes in pan-cancers were significantly different in immune type C1 (wound healing), C2 (IFN-gamma dominant), C3 (inflammatory), C4 (lymphocyte depleted), C5 (immunologically quiet), and C6 (TGF-beta dominant). Meanwhile, overexpression FAM3C promoted SW1990 cells proliferation, migration, invasion and suppressed SW1990 cells apoptosis. While knockdown of FAM3C triggered opposite results. High FAM3C expression was associated with duodenal invasion, differentiation and liver metastasis. In summary, this study provided a new perspective on the potential therapeutic role of FAM3 family genes in pan-cancer. In particular, FAM3C may play an important role in the occurrence and progression of PAAD.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Prognóstico , Neoplasias Pancreáticas/genética , Microambiente Tumoral/genética , Proteínas de Neoplasias , Citocinas , Neoplasias Pancreáticas
2.
J Clin Lab Anal ; 36(12): e24784, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36408702

RESUMO

BACKGROUD: Among digestive tract tumors, pancreatic adenocarcinoma (PAAD) has a high degree of malignancy. Therefore, it is important to search for pancreatic adenocarcinoma-related differential genes and new oncogene therapeutic targets for early diagnosis, treatment, and prognosis of pancreatic adenocarcinoma. AIMS: This study aims to investigate the expression and clinical significance of Family with sequence similarity 111 member B (FAM111B) in PAAD. MATERIALS & METHODS: Bioinformatics was used to analyze the relationship between FAM111B expression and pancreatic adenocarcinoma and to predict its role in related pathways. Tissue microarrays were used to assess the levels of FAM111B in pancreatic cancer tissues by immunohistochemical staining, and the effects of FAM111B expression levels on apoptosis, proliferation, invasion and migration of tumor cells were observed and verified by in vitro cellular assays. RESULTS: FAM111B expression was higher in PAAD tissue than in matched normal tissues (p < 0.05). The expression level of FAM111B, the metastatic status of lymph nodes was an independent prognostic factor for PAAD survival (p < 0.05). Meanwhile, overexpression of FAM111B promoted PAAD cell proliferation, migration, invasion and inhibited PAAD cell apoptosis (p < 0.05). In contrast, knockdown of FAM111B triggered the opposite result (p < 0.05). In the results of GSEA, it was shown that FAM111B may be involved in PAAD progression through p53 signaling pathway, cell cycle, and other signaling pathways (p < 0.05 and FDR q-val <0.25). FAM111B is highly expressed in PAAD tissues and is closely associated with poor prognosis of PAAD. CONCLUSION: FAM111B significantly promotes the proliferation, invasion, and migration of pancreatic adenocarcinoma cells while it inhibits their apoptosis. FAM111B may be a new biomarker for PAAD. It may provide a new direction for the treatment and diagnosis of PAAD.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Prognóstico , Linfonodos , Regulação Neoplásica da Expressão Gênica , Proteínas de Ciclo Celular , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...