Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 244: 125336, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37327933

RESUMO

In this study, a natural deep eutectic solvent (NADES) was proposed for the ultrasonic-assisted extraction of polysaccharides from abalone (Haliotis Discus Hannai Ino) viscera. Eleven NADESs were employed for abalone viscera polysaccharide (AVP) extraction. NADES, composed of choline chloride and ethylene glycol in a molar ratio 1: 3 had the highest extraction efficiency. The optimal extraction conditions were obtained using a four-factor, three-level Box-Behnken design and specific response surface methodology. The maximum predicted polysaccharide yield was 17.32 %. Fick's second law was fitted to the extraction process of AVP by ultrasonic-assisted NADES based on a high linear correlation (R2 ≥ 0.9). The extraction rate constants (k), diffusion coefficients (Du) and half-lives (t1/2) were calculated. Compared to the polysaccharides prepared by the conventional method, the polysaccharides extracted by NADES had a higher sugar content, lower molecular weight, more glucuronic acid, and stronger antioxidant capacity. Overall, the NADES extraction method established in this research can become a strategy for the preparation of high-purity and highly bioactive abalone viscera polysaccharides, which has implications for the exploitation and application of marine food byproduct resources.


Assuntos
Solventes Eutéticos Profundos , Gastrópodes , Animais , Solventes , Vísceras , Polissacarídeos
2.
Front Microbiol ; 10: 2363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681225

RESUMO

Ganoderma lingzhi is a famous medicinal mushroom used as Chinese medicine or functional food and has been accepted across the globe. It is important to enhance the contents of bioactive compounds, which in turn improves the quality and biological activity of G. lingzhi fruiting body. In this work, freshly harvested G. lingzhi fruiting bodies were treated continuously with air or with 60 and 80% oxygen for 6 days. Samples were collected and determined initially and at 1 day interval during treatment. A high total ganoderic acid content of 29.44 g kg-1 was obtained in samples treated with 60% oxygen at day 3. Quantitative reverse transcriptase (qRT)-PCR and high-performance liquid chromatography (HPLC) analysis showed that the expression levels of hydroxymethylglutaryl-CoA synthase, squalene synthase, and oxidosqualene cyclase genes were substantially increased, resulting in the increase of ganoderic acids A, B, and C2 and ganoderenic acid B. The scavenging activities with 1,1-diphenyl-2-picrylhydrazyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical, hydroxyl radical, and superoxide radical and the DNA damage protective activity were also enhanced by high oxygen treatment. The results of this work provided a potential method to enhance the active metabolite synthesis in the fruiting body of G. lingzhi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...