Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985500

RESUMO

We developed a new transient directing group, N-(2-benzoyl-4-chlorophenyl)-1,1,1-trifluoromethanesulfonamide, which can facilitate the γ-monoarylation of free amines containing symmetric γ-C-H bonds. A variety of amines containing symmetric and identical γ-C(sp3)-H and γ-C(sp2)-H reacted with a diverse range of aryl and heteroaryl iodides to provide γ-monoarylated products exclusively.

2.
Metab Eng ; 68: 26-33, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487838

RESUMO

Acetaminophen (AAP) is one of the most commonly used drug ingredients that possesses antipyretic and analgesic effects. As an unnatural chemical, AAP is commercially produced by chemical processes using petroleum-derived carbohydrates, such as phenol, as raw materials, which is unsustainable and eco-unfriendly. In this study, we report design and construction of an artificial biosynthetic pathway for de novo production of AAP from simple carbon source. By exploring and expanding the substrate repertoire of natural enzymes, we identified and characterized a novel p-aminobenzoic acid (p-ABA) monooxygenase and an p-aminophenol (p-AP) N-acetyltransferase, which enabled the bacterial production of AAP from p-ABA. Then, we constructed an p-ABA over-producer by screening of p-ABA synthases and enhancing glutamine availability, resulting in 836.43 mg/L p-ABA in shake flasks in E. coli. Subsequent assembly of the entire biosynthetic pathway permitted the de novo production of AAP from glycerol for the first time. Finally, pathway engineering by dynamically regulating the expression of pathway genes via a temperature-inducible controller enabled production enhancement of AAP with a titer of 120.03 mg/L. This work not only constructs a microbial platform for AAP production, but also demonstrates design and construction of artificial biosynthetic pathways via discovering novel bioreactions based on existing enzymes.


Assuntos
Escherichia coli , Engenharia Metabólica , Acetaminofen , Vias Biossintéticas/genética , Escherichia coli/genética , Oxigenases de Função Mista/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...