Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 5(1): 26-31, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16396492

RESUMO

Because of wide ligand-binding ability and significant industrial interest of beta-lactoglobulin (beta-LG), its binding properties have been extensively studied. However, there still exists a controversy as to where a ligand binds, since at least two potential hydrophobic binding sites in beta-LG have been postulated for ligand binding: an internal one (calyx) and an external one (near the N-terminus). In this work, the local polarity and hydrophobic binding sites of beta-LG have been characterized by using N-terminal specific fluorescence labeling combined with a polarity-sensitive fluorescent probe 3-(4-chloro-6-hydrazino- 1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine (CHTDP). The polarity within the calyx is found to be extremely low, which is explained in terms of superhydrophobicity possibly resulting from its nanostructure, and the polarity is increased with the destruction of the calyx by heat treatment. However, the polarity of the N-terminal domain in native beta-LG is decreased after thermal denaturation. This polarity trend toward decreasing instead of increasing shows that beta-LG may have no definite external hydrophobic binding site. The hydrophobic binding of a ligand such as CHTDP at the surface of the protein is probably achieved via appropriate assembling of corresponding hydrophobic residues rather than via a fixed external hydrophobic binding site. Also, the ligand-binding location in beta-LG is found to be relevant to not only experimental conditions (pH < or = 6.2 or pH > 7.1) but also binding mechanisms (hydrophobic affinity or electrostatic interaction).


Assuntos
Corantes Fluorescentes/química , Lactoglobulinas/química , Animais , Sítios de Ligação , Bovinos , Fluorometria , Interações Hidrofóbicas e Hidrofílicas , Fenazinas/química , Desnaturação Proteica , Estrutura Terciária de Proteína
2.
J Proteome Res ; 4(1): 161-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15707371

RESUMO

To detect the local polarity such as the N-terminal domain of a protein molecule, 3-(4-chloro-6-hydrazino-1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine has been designed and synthesized as a polarity-sensitive fluorescent probe by using an s-triazine ring as a backbone, neutral red and hydrazine as a polarity-sensitive fluorophore, and a labeling group, respectively. The fluorescence properties of the probe have been characterized. The probe has the following features: (1) stable in various solvents; (2) the long-wavelength emission of >550 nm that can avoid the interferences of the background fluorescence shorter than 500 nm from common biomacromolecules; and (3) the maximum emission wavelength (lambda(em)) sensitive to solvent polarity only but not to pH and temperature. The hydrazino group in such a probe reacts readily with an active carbonyl produced by transamination of a protein molecule, leading to N-terminal specific attachment of the fluorophore and thereby allowing the monitoring of local polarity. With this probe, the polarity of the N-terminal domain in both native and heat-denatured alpha-lactalbumin has been first determined, which corresponds to that with a dielectric constant of about 16, and the hydrophobic core near the N-terminus is found to be conservative for heating. The present strategy may provide a general method to study the local environmental changes of a protein molecule under different denaturation conditions.


Assuntos
Corantes Fluorescentes/síntese química , Lactalbumina/química , Eletricidade Estática , Temperatura Alta , Fenazinas/síntese química , Desnaturação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...