Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 33(2): 023135, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859204

RESUMO

Transport of chiral active particles is numerically investigated in a two-dimensional ring-shaped channel. The ring-shaped channel is transversal asymmetric and can induce the directed transport (rotation) of chiral active particles. For the particles with small chirality, they slide along the outer boundary of the channel. For the particles with large chirality, the particles move along some small local circular orbits and can also exhibit directed rotation. Moreover, the rotation effect can be strongly enhanced by modifying the inner boundary geometry. Based on the study of particle rotation, we further study the separation of active particles with different chiralities. It is found that the particles with different chiralities may be distributed in different regions of the ring-shaped channel. Interestingly, these particles can be completely separated by shifting the channel's inner boundary or adding a blocking plate in the channel. Our results may be useful for understanding relevant experimental phenomena and provide a scheme for the separation of binary mixtures.

2.
J Chem Phys ; 152(3): 034901, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31968953

RESUMO

Efficient separation of particles has ever-growing importance in both fundamental research and nanotechnological applications. However, such particles usually suffer from some fluctuations from external surroundings and outside intervention from unknown directions. Here, we numerically investigate the transport of Brownian particles in a straight channel with regular arrays of equilateral triangle obstacles. The particles can be rectified by the triangle obstacles under the action of an oscillating (square wave) force. At the given amplitude and frequency of the oscillating force, the transport is sensitively dependent on the force direction and particle size. In the cases of longitudinal and transversal oscillating force, the particles with different sizes exhibit different transport behaviors. Interestingly, under a constant force in the longitudinal direction, the phenomenon of particle separation is observed, where the particles with different radii will move in different directions. Furthermore, we also study the transport of Brownian particles driven by a tilt oscillating force. By choosing proper force directions, we can observe the gating phenomenon and transport reversal. Under different driving conditions, we can separate particles of different sizes and make them move in opposite directions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...