Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Neoplasma ; 70(1): 94-102, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36637084

RESUMO

Liver cancer represents one of the deadliest cancers, with a rising incidence worldwide. Triptonide is found in the traditional Chinese medicinal plant Tripterygium wilfordii Hook. This study aimed to examine the anticancer properties of triptonide in human hepatocellular carcinoma (HCC). HCC cells were administered with triptonide at various levels, and CCK-8 and colony formation assays were carried out for detecting HCC cell proliferation. Then, cell apoptosis and cell cycle distribution were evaluated by flow cytometry. Tumor growth was monitored noninvasively by ultrasound imaging. Cell migration and invasion were quantitated by wound healing and Transwell assays. A metastasis model was established via tail vein injection of HCC cells in nude mice. Immunoblot was performed to quantitate the expression of proteins involved in the EGFR/PI3K/AKT signaling and its downstream effectors. Triptonide repressed cell proliferation and induced cell cycle arrest and apoptosis in cultured HCC cells, and suppressed tumor growth in vivo. In addition, triptonide inhibited EMT, migration and invasion in cultured HCC cells, and lung metastasis in nude mice. Mechanistically, triptonide acted by inhibiting the EGFR/PI3K/AKT signaling and regulated its downstream effectors, e.g., the cell cycle-associated protein cyclin D1, the apoptosis-related protein Bcl-2, the EMT marker E-cadherin, and the invasion-related protein MMP-9. Triptonide suppresses proliferation, EMT, migration and invasion, and promotes apoptosis and cell cycle arrest by repressing the EGFR/PI3K/AKT signaling. Therefore, triptonide might be considered for liver cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Proliferação de Células , Receptores ErbB , Linhagem Celular Tumoral , Movimento Celular
3.
Life Sci ; 311(Pt B): 121174, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36396110

RESUMO

AIMS: Glioblastoma (GBM) with aggressive nature and poor prognosis has become the most common intracranial tumor. Most clinical chemotherapeutic drugs fail to achieve the anticipated therapeutic outcome. This study identified the anti-GBM effects of ginkgolic acids (GAs) and elucidated the potential molecular mechanisms, exploiting the significant antitumor effects of GAs, which are widely present in the outer bark of Ginkgo biloba. MATERIALS AND METHODS: Two GBM cell lines, U251 and T98G, were selected for in vitro experiments to evaluate the antitumor effects of GA. Cell viability and proliferation were examined by MTT and colony formation assay. The effect of GA on apoptosis and the cell cycle was examined by flow cytometry. Scratch and Transwell assays reflected the migration and invasion ability. The molecular mechanisms were explored by using immunoblot analysis, RNA sequencing and bioinformatics. In the nude mouse transplantation tumor model, preclinical treatment effects were assessed by ultrasound and MRI. KEY FINDINGS: The present study showed that GA inhibited the proliferation, migration, invasion, stemness, epithelial-to-mesenchymal transition (EMT) of GBM cells and induced apoptosis by inhibiting CCL2, affecting the JAK-STAT and PI3K-AKT signaling pathways, and inhibiting the EMT regulators Snail and Slug. Finally, GA showed significant control of tumors in a GBM xenograft model. SIGNIFICANCE: GA inhibits the progression of GBM cells by targeting CCL2, affecting the JAK-STAT and PI3K-AKT signaling pathways, and inhibiting the EMT regulators Snail and Slug. The outstanding antitumor properties of GA provide a novel strategy for the GBM therapy.


Assuntos
Glioblastoma , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular , Proliferação de Células , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Transdução de Sinais , Janus Quinase 3/metabolismo , Fator de Transcrição STAT1/metabolismo , Quimiocina CCL2/metabolismo
4.
Biomed Res Int ; 2022: 6441179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411770

RESUMO

Objectives. Preparation of a multifunctional drug-loaded phase-change nanoparticle (NP), pirfenidone perfluoropentane liposome NPs (PPL NPs), and combined with low-intensity focused ultrasound (LIFU) to influence epithelial mesenchymal transition (EMT) for hepatocellular carcinoma (HCC) by inhibiting the activity of activated Hepatic Stellate Cells (a-HSCs). Methods. PPL NPs were prepared by the thin film dispersion method. The appearance, particle size, zeta potential, encapsulation efficiency, drug loading rate, drug release in vitro, and stability of PPL NPs were tested. The role of a-HSCs in HCC metastasis was studied by CCK-8, colony formation assay, apoptosis, cellular uptake assay, wound healing assay, and Transwell assay. Western blot was used to detect the related protein expression levels. In vitro and vivo, the acoustic droplet vaporization (ADV) of PPL NPs was tested at different times and LIFU intensities. Biosafety of the PPL NPs was assessed by measuring nude mouse body weight and hematoxylin and eosin (H&E) staining. Results. The results showed that the PPL NPs had good biosafety, with an average particle size of 346.6 ± 62.21 nm and an average zeta potential of -15.23 mV. When the LIFU power is 2.4 W/cm2, it can improve the permeability of cells, further promote the uptake of drugs by cells, and improve the toxicity of drugs. In vitro experiments showed that PPL NPs could inhibit the proliferation of a-HSCs cells, thereby affecting the metastasis of HCC, and were related to the TGFß-Smad2/3-Snail signaling pathway. Both in vivo and in vitro PPL NPs enhanced ultrasound imaging by LIFU-triggered ADV. Conclusion. The PPL NPs designed and prepared in this study combined with LIFU irradiation could significantly alter the EMT of HCC by inhibiting LX2. Clinically, PPL NPs will also be considered a promising contrast agent due to their ultrasound imaging capabilities.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal , Células Estreladas do Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Lipossomos , Camundongos Nus
5.
Life Sci ; 293: 120358, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35092731

RESUMO

AIMS: Glioblastoma (GBM) is the most common and aggressive intracranial tumor with poor prognosis. A large majority of clinical chemotherapeutic agents cannot achieve the desired therapeutic effect. Chelerythrine (CHE), a natural component with multitudinous pharmacological functions, has been proven to have outstanding antitumor effects in addition to antibacterial, anti-inflammatory, and hypotensive effects. However, the anti-GBM effect of CHE has not been reported to date. The purpose of this paper is to observe the anti-GBM effect of CHE and further explore the related mechanism. MATERIALS AND METHODS: GBM cell lines (U251 and T98G) and BALB/c nude mice were used in the experiments. Methyl thiazolyl tetrazolium (MTT) and clone formation assays were applied to detect the viability, proliferation and stemness of GBM cells. Flow cytometry was utilized to identify the effect of CHE on GBM apoptosis. Scratch and Transwell experiments reflected the migration and invasion of cells. In vivo, xenograft tumors were implanted subcutaneously in nude mice. The progression of tumors was assessed by ultrasound and magnetic resonance imaging. Finally, western blot, bioinformatics, and immunohistochemistry experiments were used to explore the molecular mechanisms in depth. KEY FINDINGS: In vitro tests showed that CHE inhibited the proliferation, stemness, migration, and invasion of GBM cells and induced apoptosis. In vitro, CHE was observed to restrain the progression of xenograft tumors. We eventually proved that the cytotoxicity of CHE was relevant to the TGFB1-ERK1/2/Smad2/3-Snail/ZEB1 signaling pathway. SIGNIFICANCE: CHE inhibited GBM progression by inhibiting the TGFB1-ERK1/2/Smad2/3-Snail/ZEB1 signaling pathway and is a potential chemotherapeutic drug for GBM.


Assuntos
Benzofenantridinas/farmacologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzofenantridinas/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Progressão da Doença , Relação Dose-Resposta a Droga , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Smad2/antagonistas & inibidores , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Homeobox 1 de Ligação a E-box em Dedo de Zinco/antagonistas & inibidores
6.
Nano Converg ; 8(1): 29, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606010

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world, and patients with HCC face a poor prognosis. The conventional therapeutic strategies for HCC have undergone a challenge-riddled evolution owing to side effects and unsatisfactory efficacy. Here, aiming to provide a new method of HCC elimination, we formulated a novel multifunctional nanocapsule (PFP@PLGA/Cu12Sb4S13, PPCu) with applications in contrast-enhanced ultrasound imaging (CEUS) and photothermal therapy (PTT). These PPCu were successfully constructed with an average diameter of 346 nm (polydispersity index, PDI = 0.276). The reinforced contrast ratio of these PPCu was determined by CEUS, revealing their promising applications in image-guided monitoring of HCC treatment. Furthermore, the excellent photoabsorption and biocompatibility indicated by organ H&E staining indicated that PPCu meet quality expectations for use as photothermal transduction agent (PTA). PPCu treatment at 50 °C and higher temperatures efficiently repressed the proliferation, induced the apoptosis and decreased the motility of HCC cells. These effects might have been results of RAS/MAPK/MT-CO1 signaling pathway inhibition. In summary, PPCu were constructed to integrate CEUS and PTT successfully into therapy, which can lead to HCC elimination through RAS/MAPK/MT-CO1 signaling pathway repression.

7.
Neoplasma ; 68(5): 924-937, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33998239

RESUMO

Homoharringtonine (HHT), was first isolated from the bark of Cephalotaxus harringtonia (Knight ex J. Forbes) K. Koch and Cephalotaxus fortunei Hook trees. The bark extract is used to treat leukemia and in recent years has also been used in traditional Chinese medicine (TCM) to treat solid tumors. However, the inhibitory mechanism of HHT in the progression of hepatocellular carcinoma (HCC) is rarely studied. We aimed to evaluate the antitumor efficacy of HHT on HCC in vitro and in vivo and elucidate the underlying molecular mechanism(s). HCC cell lines, including HCCLM3, HepG2, and Huh7, were used to evaluate the antitumor efficacy of HHT in vitro. Cytotoxicity and proliferative ability were evaluated by MTT and colony formation assays. Cell cycle progression and apoptosis in HHT-treated HCC cells were evaluated by flow cytometry. To determine the migration and invasion abilities of HCC cells, wound-healing and Transwell assays were used. Finally, western blot analysis was used to reveal the proteins involved. We also established a xenograft nude mouse model for in vivo assessments of the preclinical efficacy of HHT, mainly using hematoxylin and eosin staining, immunohistochemistry, ultrasound imaging (USI), and magnetic resonance imaging (MRI). HHT suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells, and induced cell cycle arrest at the G2 phase and apoptosis. In the HCC xenograft model, HHT showed an obvious tumor-suppressive effect. Surprisingly, Slug expression was also decreased by HHT via the PI3K/AKT/GSK3ß signaling pathway at least partially suppressed the growth of HCC via the PI3K/AKT/GSK3ß/Slug signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Mepesuccinato de Omacetaxina , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
DNA Cell Biol ; 40(1): 93-100, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33181035

RESUMO

Glioblastoma multiforme (GBM) is characterized by diffuse infiltration of the brain, active regional recurrence, low cure proportion, and limited chemotherapy efficiency. MutS homolog 6 (MSH6) is a component of the mismatch repair system related to the oncogenesis, tumor evolution, and recurrence of GBM. The impact of MSH6 upregulation on the tumor microenvironment (TME) of GBM and the feasibility of MSH6 as a potential target to improve the prognosis remain unknown. The expression of MSH6 at mRNA level indicated that MSH6 expressed higher in GBM tissues than that in normal ones. The transwell assay and expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) suggested that the capability of invasion and migration in U251-MSH6 was more stubborn. The intracranial tumor model was established with nude mice to further explore in vivo. The time-weight curve, overall survival, tumor volumes, expression levels of MMP-2 and MMP-9 in tissue, and hematoxylin and eosin staining all indicated that MSH6 had a positive effect on metastasis. The expression levels of related proteins suggested that the hypoxia TME induced by MSH6 may promote metastasis via epithelial to mesenchymal transition, stemness, and angiogenesis progress. MSH6 is an overexpressed oncogene in human GBM tissues, which accelerated metastasis by regulating hypoxia inducible factor-1A (HIF1A) to form a hypoxic TME in GBM. The MSH6 was a vital marker of GBM, making it a promising therapeutic target.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Microambiente Tumoral , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Regulação para Cima
9.
Life Sci ; 258: 118158, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750435

RESUMO

AIMS: Glioblastoma multiforme (GBM) is characterized by aggressive infiltration and terrible lethality. The overwhelming majority of chemotherapeutic drugs fail to exhibit the desired treatment effects. Polydatin (PD), which was initially extracted from Polygonum cuspidatum, is distinguished for its outstanding cardioprotective, hepatoprotective, and renal protective effects, as well as significant anticancer activities. However, the anti-GBM effect of PD is unclear. MATERIALS AND METHODS: Cell proliferation and apoptosis after PD intervention were estimated using MTT, colony formation and flow cytometry assays in vitro, while wound-healing and Transwell assays were applied to assess cell migration and invasion. In addition, the anti-GBM effects of PD in vivo were detected in the subcutaneous tumor model of nude mice. Moreover, Western blot, immunofluorescence and immunohistochemical staining assays were employed to elaborate the relevant molecular mechanisms. KEY FINDINGS: The present study demonstrated that PD repressed cell proliferation, migration, invasion and stemness and promoted apoptosis in GBM cells. Moreover, by correlating the molecular characteristics of cancer cells with different sensitivities to PD and employing diverse analytical methods, we ultimately verified that the cytotoxicity of PD was related to EGFR-AKT/ERK1/2/STAT3-SOX2/Snail signaling pathway inhibition, in which multiple components were vital therapeutic targets of GBM. SIGNIFICANCE: This work demonstrated that PD could inhibit proliferation, migration, invasion and stemness and induce apoptosis by restraining multiple components of the EGFR-AKT/ERK1/2/STAT3-SOX2/Snail signaling pathway in GBM cells.


Assuntos
Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glucosídeos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Estilbenos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Glucosídeos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Estilbenos/farmacologia
10.
DNA Cell Biol ; 39(3): 355-367, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31913706

RESUMO

Hepatocellular carcinoma (HCC), the sixth most common malignancy worldwide, is characterized by a dismal prognosis due to high recurrence and metastasis rates. Thus, the need for the development of novel chemotherapeutic drugs is urgent. Cyclovirobuxine D (CVB-D), a steroidal alkaloid extracted from Buxus microphylla that has been extensively used to relieve the symptoms of cardiovascular diseases, has shown promising antineoplastic effects in recent studies. However, the therapeutic effects and underlying mechanisms of CVB-D on HCC remain largely unelucidated. This study experimentally indicated that CVB-D can repress HCC cell proliferation by arresting the cell cycle in G2 phase and can facilitate apoptosis. In addition, the migratory and invasive capabilities of HCC cells were noticeably attenuated by a nonlethal dose of CVB-D, and this attenuation was correlated with the inhibition of epithelial-mesenchymal transition (EMT). Moreover, in vivo, CVB-D displayed excellent anticancer effects in HCC tumor-bearing nude mice. Regarding the molecular mechanisms of CVB-D activity, decreased Slug expression was determined to be associated with the aforementioned anti-HCC functions of this extract, which might be regulated by epidermal growth factor receptor (EGFR) through the focal adhesion kinase (FAK)-associated PI3K/AKT and MEK/ERK1/2 signaling pathways. Collectively, our results revealed the suppressive effects of CVB-D on progressive behaviors of HCC, including proliferation, migration, invasion, and EMT, in addition to its outstanding proapoptotic effects, which were correlated with the inhibition of the EGFR-FAK-AKT/ERK1/2-Slug signaling pathway. These discoveries provide an experimental and theoretical foundation for the use of CVB-D as a promising candidate for HCC therapy.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Fator de Crescimento Epidérmico/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Animais , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Oncol Lett ; 18(5): 5654, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31666816

RESUMO

[This corrects the article DOI: 10.3892/ol.2019.10123.].

12.
Oncol Lett ; 17(5): 4505-4513, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30944640

RESUMO

Polydatin, extracted from Polygonum cuspidatum, is known for its anti-platelet aggregation and anti-inflammatory effects. However, studies on the association of polydatin with cancer are limited, particularly with regards to epithelial-mesenchymal transition (EMT)-associated migration and invasion of cancer cells. The purpose of the present study was to reveal the potential anticancer effects of polydatin on hepatocellular carcinoma (HCC) cells, particularly its effects on EMT. MTT assay was used to determine cell viability. Migration and invasion were evaluated through wound healing and transwell assays. Colony formation efficiency assay was conducted to detect proliferation. Flow cytometric analyses of apoptosis and cell cycle progression were performed following cells staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and PI alone, respectively. Western blotting was used to investigate relevant molecular mechanisms. The results indicated that polydatin inhibited proliferation via G2/M arrest, suppressed migration and invasion of HCC cells, and promoted their apoptosis. In addition, phosphorylated (p)-protein kinase B (AKT), p-Janus kinase 1 and p-signal transducer and activator of transcription 3 (STAT3) levels were decreased as polydatin concentrations increased, and forkhead box protein O1 (FOXO1) expression was upregulated. Furthermore, the expression levels of various markers of EMT were reversed following treatment with polydatin. In conclusion, the present study validated that polydatin may inhibit proliferation via G2/M arrest, and suppressed EMT-associated migration and invasion of HCC cells. The results also suggested that polydatin may promote HCC cell apoptosis by blocking the AKT/STAT3-FOXO1 signaling pathway.

13.
Theranostics ; 9(5): 1453-1473, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867843

RESUMO

Glioblastoma multiforme (GBM) has been considered the most aggressive glioma type. Temozolomide (TMZ) is the main first-line chemotherapeutic agent for GBM. Decreased mutS homolog 6 (MSH6) expression is clinically recognized as one of the principal reasons for GBM resistance to TMZ. However, the specific functions of MSH6 in GBM, in addition to its role in mismatch repair, remain unknown. Methods: Bioinformatics were employed to analyze MSH6 mRNA and protein levels in GBM clinical samples and to predict the potential cancer-promoting functions and mechanisms of MSH6. MSH6 levels were silenced or overexpressed in GBM cells to assess its functional effects in vitro and in vivo. Western blot, qRT-PCR, and immunofluorescence assays were used to explore the relevant molecular mechanisms. Cu2(OH)PO4@PAA nanoparticles were fabricated through a hydrothermal method. Their MRI and photothermal effects as well as their effect on restraining the MSH6-CXCR4-TGFB1 feedback loop were investigated in vitro and in vivo. Results: We demonstrated that MSH6 is an overexpressed oncogene in human GBM tissues. MSH6, CXCR4 and TGFB1 formed a triangular MSH6-CXCR4-TGFB1 feedback loop that accelerated gliomagenesis, proliferation (G1 phase), migration and invasion (epithelial-to-mesenchymal transition; EMT), stemness, angiogenesis and antiapoptotic effects by regulating the p-STAT3/Slug and p-Smad2/3/ZEB2 signaling pathways in GBM. In addition, the MSH6-CXCR4-TGFB1 feedback loop was a vital marker of GBM, making it a promising therapeutic target. Notably, photothermal therapy (PTT) mediated by Cu2(OH)PO4@PAA + near infrared (NIR) irradiation showed outstanding therapeutic effects, which might be associated with a repressed MSH6-CXCR4-TGFB1 feedback loop and its downstream factors in GBM. Simultaneously, the prominent MR imaging (T1WI) ability of Cu2(OH)PO4@PAA could provide visual guidance for PTT. Conclusions: Our findings indicate that the oncogenic MSH6-CXCR4-TGFB1 feedback loop is a novel therapeutic target for GBM and that PTT is associated with the inhibition of the MSH6-CXCR4-TGFB1 loop.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glioblastoma/fisiopatologia , Glioblastoma/terapia , Hipertermia Induzida/métodos , Fototerapia/métodos , Receptores CXCR4/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Modelos Animais de Doenças , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Modelos Teóricos , Nanoestruturas/administração & dosagem , Resultado do Tratamento , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Exp Clin Cancer Res ; 38(1): 139, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922391

RESUMO

BACKGROUND: Nuciferine (NF), extracted from the leaves of N. nucifera Gaertn, has been shown to exhibit anti-tumor and anti-viral pharmacological properties. It can also penetrate the blood brain barrier (BBB). However, the mechanism by which NF inhibits glioblastoma (GBM) progression is not well understood. We aimed to determine the anti-tumor effect of NF on GBM cell lines and clarify the potential molecular mechanism involved. METHODS: U87MG and U251 cell lines were used in vitro to assess the anti-tumor efficacy of NF. Cytotoxicity, viability, and proliferation were evaluated by MTT and colony formation assay. After Annexin V-FITC and PI staining, flow cytometry was performed to evaluate apoptosis and cell cycle changes in NF-treated GBM cells. Wound healing and Transwell assays were used to assess migration and invasion of GBM cells. Western blot analysis, immunofluorescence staining, immunohistochemistry, and bioinformatics were used to gain insights into the molecular mechanisms. Preclinical therapeutic efficacy was mainly estimated by ultrasound and MRI in xenograft nude mouse models. RESULTS: NF inhibited the proliferation, mobility, stemness, angiogenesis, and epithelial-to-mesenchymal transition (EMT) of GBM cells. Additionally, NF induced apoptosis and G2 cell cycle arrest. Slug expression was also decreased by NF via the AKT and STAT3 signaling pathways. Interestingly, we discovered that NF affected GBM cells partly by targeting SOX2, which may be upstream of the AKT and STAT3 pathways. Finally, NF led to significant tumor control in GBM xenograft models. CONCLUSIONS: NF inhibited the progression of GBM via the SOX2-AKT/STAT3-Slug signaling pathway. SOX2-targeting with NF may offer a novel therapeutic approach for GBM treatment.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Aporfinas/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Aporfinas/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biochem Biophys Res Commun ; 508(1): 159-168, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30473218

RESUMO

The transcription factor Krüppel-like factor 5 (KLF5) is highly expressed in many cancers and serves as a prognostic factor. However, the function of KLF5 in hepatocellular carcinoma (HCC) is unclear. In this study, we found that KLF5 was significantly overexpressed in HCC cell lines and specimens, and high KLF5 expression predicted a poor prognosis for HCC patients. Then, we studied the effects of KLF5 on the proliferation, apoptosis, migration and invasion of HCC cells in vitro and vivo. The inhibition of KLF5 markedly inhibited HCC growth and metastasis, while KLF5 overexpression promoted these processes. In addition, we observed that KLF5 could promote the epithelial-mesenchymal transition (EMT) in HCC via the PI3K/AKT/Snail signaling pathway. The silencing of KLF5 in HCC cell lines downregulated the expression of N-cadherin, Vimentin and Snail and increased the expression of the epithelial marker E-cadherin. The expression of MMP2 and MMP9 was also decreased in KLF5-silenced HCC cells. However, opposite results were observed in the KLF5-overexpressing group. These results indicate that KLF5 plays a significant role in HCC progression and metastasis and induces EMT via activating PI3K/AKT/Snail signaling, and the inhibition of KLF5 may be a potential treatment modality for patients with HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/secundário , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade
16.
Exp Ther Med ; 15(1): 31-38, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29387180

RESUMO

The aim of the present study was to investigate the effect of Forkhead family transcription factor P3 (Foxp3) knockdown on the function of cluster of differentiation (CD)4+CD25+ regulatory T cell (Tregs) and the tumor growth of a hepatocellular carcinoma (HCC) mouse model. CD4+CD25+ Tregs and CD4+CD25- T cells were sorted from peripheral blood mononuclear cells (PBMCs) of patients with HCC. Then, ultrasound-targeted microbubble destruction (UTMD)-mediated Foxp3-microRNA (miRNA) was transfected into Tregs. Subsequently, CD4+CD25- T cells were co-cultured with PBMC and Tregs without Foxp3-miRNA (Foxp3+Tregs) or Tregs with Foxp3-miRNA (Foxp3-Tregs) and the proliferation-inhibition ratio of CD4+CD25- T cells was detected using a Cell Counting Kit-8. Additionally, HCC mice were treated with UTMD-mediated Foxp3-shRNA, the tumor volume was calculated and the content of CD4+ and CD25+ T cells in the blood were detected using flow cytometry. The content of interferon-γ (IFN-γ), interleukin (IL)-2, IL-10, transforming growth factor-ß (TGF-ß) and vascular endothelial growth factor (VEGF) in cultural supernatant and serum were detected by ELISA analysis. Foxp3-Tregs significantly reduced the inhibition effect of Foxp3+Tregs on the proliferation of CD4+CD25- T cells (P<0.01). The content of IFN-γ and IL-2 significantly increased, while IL-10 and TGF-ß significantly decreased in the co-cultured system of Foxp3-Tregs compared with the co-cultured system of Foxp3+Tregs (P<0.01). Following treatment with Foxp3-shRNA, the average tumor volume, ratio of Tregs/CD4+ T cells and level of IL-10, TGF-ß and VEGF significantly decreased, however, the level of IFN-γ and IL-2 significantly increased compared with un-treated HCC mice (P<0.05). Foxp3 knockdown may suppress the tumor growth of HCC mice through relieving the immunosuppressive function of Tregs.

17.
Biochem Biophys Res Commun ; 496(4): 1040-1046, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29366782

RESUMO

The impact of DNA mismatch repair (MMR) on resistance to temozolomide (TMZ) therapy in patients with glioblastoma (GBM) is recently reported but the mechanisms are not understood. We aim to analyze the correlation between MMR function and the acquired TMZ resistance in GBM using both relevant clinical samples and TMZ resistant cells. First we found increased expression of MSH6, one of key components of MMR, in recurrent GBM patients' samples who underwent TMZ chemotherapy, comparing with those matched samples collected at the time of diagnosis. Using the cellular models of acquired resistance to TMZ, we further confirmed the up-regulation of MSH6 in TMZ resistant cells. Moreover, a TCGA dataset contains a large cohort of GBM clinical samples with or without TMZ treatment reinforced the increased expression of MSH6 and other MMR genes after long-term TMZ chemotherapy, which may resulted in MMR dysfunction and acquired TMZ resistance. Our results suggest that increased expression of MSH6, or other MMR, may be a new mechanism contributing to the acquired resistance during TMZ therapy; and may serve as an indicator to the resistance in GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Adulto , Antineoplásicos Alquilantes/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Dacarbazina/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Temozolomida , Resultado do Tratamento , Células Tumorais Cultivadas , Regulação para Cima
18.
Mol Med Rep ; 16(6): 9401-9408, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039593

RESUMO

Malignant gliomas are a group of aggressive neoplasms among human cancers. The curative effects of current treatments are finite for improving the prognosis of patients. Hyperthermia (HT) is an effective treatment for cancers; however, the effects of HT with different temperatures in treatment of MG and relevant mechanisms remain unclear. MTT assay and Annexin V­fluorescein isothiocyanate/propidium iodide staining were used for investigating the proliferation and apoptosis of C6 cells, respectively. Western blotting was applied to detect the expression of proteins. Ultrasonography was employed to evaluate the tumor formation rate, growth rate, angiogenesis rate and degree of hardness of tumors in vivo. The authors certified that HT with 42­46˚C x 1 h, 1 t could inhibit proliferation, promote apoptosis, reduce tumor formation rate, growth rate, angiogenesis rate, degree of hardness of tumors, ischemic tolerance and anoxic tolerance, and have synergy with temozolomide in C6 cells. Long­term HT (43˚C x 1 h, 1 t/5 d, 90 d) did not cut down the sensitivity of C6 cells to HT, and sustainably inhibited the proliferation of C6 cells. Furthermore, the authors proved HT produced these effects primarily through inhibition of the EGFR/STAT3/HIF­1A/VEGF­A pathway.


Assuntos
Apoptose , Neoplasias Encefálicas/patologia , Receptores ErbB/metabolismo , Glioma/patologia , Hipertermia Induzida , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Temperatura , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Glioma/tratamento farmacológico , Glioma/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ratos Wistar , Padrões de Referência , Transdução de Sinais/efeitos dos fármacos , Temozolomida
19.
Oncotarget ; 8(1): 1703-1713, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27924058

RESUMO

The epithelial-to-mesenchymal transition (EMT) program is critical for epithelial cell cancer progression and fibrotic diseases. FOXO1 influences a broad range of physiological and pathological processes. However, the mechanism by which FOXO1 inhibits EMT is not fully understood. In this study, we demonstrated that FOXO1 overexpression inhibited cell motility and invasiveness in vitro and inhibited lung metastasis in vivo. In addition, we found that FOXO1 couldreverse the EMT program. FOXO1 silencing by siRNA in hepatocellular carcinoma (HCC) cell lines enhanced the expression of mesenchymal markers and decreased the expression of the epithelial markers. Consistent with these findings, FOXO1 overexpression exerted opposite effects. Furthermore, we found that FOXO1 levels were inversely correlated with the levels of EMT inducers, including Snail, Slug, ZEB1, ZEB2 and Twist1 in HCC cells. Co-immunoprecipitation and immunohistochemistry assays revealed that an interaction between FOXO1 and ZEB2. A dual-luciferase reporter assay and a ChIP assay further demonstrated that FOXO1 binds to the ZEB2 promoter. Together, these findings suggest that FOXO1 overexpression or ZEB2 inhibition might be potential therapeutic strategies for treating HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal/fisiologia , Proteína Forkhead Box O1/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Transplante Heterólogo , Proteína 1 Relacionada a Twist/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
20.
Ultrasonics ; 62: 97-102, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26048174

RESUMO

The purpose of this study was to investigate the combined effect of ultrasound and SonoVue microbubble on CD4(+)CD25(+) regulatory T cells (Tregs) viability and to explore the appropriate parameters for Tregs transfection. Tregs were separated from peripheral venous blood of patients with hepatocellular carcinoma and seeded in 96-well plates. The optimal ultrasound exposure time and optimal SonoVue microbubble concentration for Tregs were measured by mechanical index (MI) of 1.2 or 1.4, exposure time of 0, 30, 60, 90, 120, 150, 180s, and 0, 10, 20, 30, 40, 50µL/100µL microbubble per well, respectively. In addition, the combined effect of ultrasound and microbubble on Tregs viability was evaluated according to the following parameters: MI 1.2/1.4+exposure time of 120, 150, 180s+0, 10, 20, 30, 40, 50µL/100µL microbubble per well. Tregs viability investigations were performed in order to explore the optimal transfection condition. The efficiency of plasmid transfer was determined by detection of luciferase activity on the microscopic examinations. The proliferation of Tregs could be promoted by ultrasound exposures, while being decreased with the increasing concentration of microbubbles. Under the current experimental conditions, the optimal ultrasound parameters were MI=1.4 and exposure time=150/180s. The optimal microbubble concentration was 10µL/100µL. Compared with treatment with ultrasound or microbubbles alone, the transfection efficiency of Tregs improved 50% by combining ultrasound and microbubble. The results indicate that both ultrasound and microbubble could affect the Tregs proliferation and the optimal Treg transfection rate was obtained by treating with 10% microbubbles and ultrasound exposure for 150/180s under ultrasound MI of 1.4.


Assuntos
Meios de Contraste/farmacologia , Microbolhas , Fosfolipídeos/farmacologia , Hexafluoreto de Enxofre/farmacologia , Linfócitos T Reguladores , Transfecção , Ultrassom , Apoptose , Carcinoma Hepatocelular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Neoplasias Hepáticas , Plasmídeos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...