Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38920343

RESUMO

While significant strides have been made in predicting neoepitopes that trigger autologous CD4+ T cell responses, accurately identifying the antigen presentation by human leukocyte antigen (HLA) class II molecules remains a challenge. This identification is critical for developing vaccines and cancer immunotherapies. Current prediction methods are limited, primarily due to a lack of high-quality training epitope datasets and algorithmic constraints. To predict the exogenous HLA class II-restricted peptides across most of the human population, we utilized the mass spectrometry data to profile >223 000 eluted ligands over HLA-DR, -DQ, and -DP alleles. Here, by integrating these data with peptide processing and gene expression, we introduce HLAIImaster, an attention-based deep learning framework with adaptive domain knowledge for predicting neoepitope immunogenicity. Leveraging diverse biological characteristics and our enhanced deep learning framework, HLAIImaster is significantly improved against existing tools in terms of positive predictive value across various neoantigen studies. Robust domain knowledge learning accurately identifies neoepitope immunogenicity, bridging the gap between neoantigen biology and the clinical setting and paving the way for future neoantigen-based therapies to provide greater clinical benefit. In summary, we present a comprehensive exploitation of the immunogenic neoepitope repertoire of cancers, facilitating the effective development of "just-in-time" personalized vaccines.


Assuntos
Aprendizado Profundo , Antígenos de Histocompatibilidade Classe II , Humanos , Antígenos de Histocompatibilidade Classe II/imunologia , Epitopos/imunologia , Biologia Computacional/métodos , Epitopos de Linfócito T/imunologia
2.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38561176

RESUMO

MOTIVATION: Understanding the intermolecular interactions of ligand-target pairs is key to guiding the optimization of drug research on cancers, which can greatly mitigate overburden workloads for wet labs. Several improved computational methods have been introduced and exhibit promising performance for these identification tasks, but some pitfalls restrict their practical applications: (i) first, existing methods do not sufficiently consider how multigranular molecule representations influence interaction patterns between proteins and compounds; and (ii) second, existing methods seldom explicitly model the binding sites when an interaction occurs to enable better prediction and interpretation, which may lead to unexpected obstacles to biological researchers. RESULTS: To address these issues, we here present DrugMGR, a deep multigranular drug representation model capable of predicting binding affinities and regions for each ligand-target pair. We conduct consistent experiments on three benchmark datasets using existing methods and introduce a new specific dataset to better validate the prediction of binding sites. For practical application, target-specific compound identification tasks are also carried out to validate the capability of real-world compound screen. Moreover, the visualization of some practical interaction scenarios provides interpretable insights from the results of the predictions. The proposed DrugMGR achieves excellent overall performance in these datasets, exhibiting its advantages and merits against state-of-the-art methods. Thus, the downstream task of DrugMGR can be fine-tuned for identifying the potential compounds that target proteins for clinical treatment. AVAILABILITY AND IMPLEMENTATION: https://github.com/lixiaokun2020/DrugMGR.


Assuntos
Proteínas , Ligantes , Proteínas/química , Sítios de Ligação
3.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37114624

RESUMO

Identification of active candidate compounds for target proteins, also called drug-protein interaction (DPI) prediction, is an essential but time-consuming and expensive step, which leads to fostering the development of drug discovery. In recent years, deep network-based learning methods were frequently proposed in DPIs due to their powerful capability of feature representation. However, the performance of existing DPI methods is still limited by insufficiently labeled pharmacological data and neglected intermolecular information. Therefore, overcoming these difficulties to perfect the performance of DPIs is an urgent challenge for researchers. In this article, we designed an innovative 'multi-modality attributes' learning-based framework for DPIs with molecular transformer and graph convolutional networks, termed, multi-modality attributes (MMA)-DPI. Specifically, intermolecular sub-structural information and chemical semantic representations were extracted through an augmented transformer module from biomedical data. A tri-layer graph convolutional neural network module was applied to associate the neighbor topology information and learn the condensed dimensional features by aggregating a heterogeneous network that contains multiple biological representations of drugs, proteins, diseases and side effects. Then, the learned representations were taken as the input of a fully connected neural network module to further integrate them in molecular and topological space. Finally, the attribute representations were fused with adaptive learning weights to calculate the interaction score for the DPIs tasks. MMA-DPI was evaluated in different experimental conditions and the results demonstrate that the proposed method achieved higher performance than existing state-of-the-art frameworks.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Interações Medicamentosas , Descoberta de Drogas , Aprendizagem , Redes Neurais de Computação
4.
Bioinform Adv ; 3(1): vbad116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282612

RESUMO

Motivation: Accurate identification of target proteins that interact with drugs is a vital step in silico, which can significantly foster the development of drug repurposing and drug discovery. In recent years, numerous deep learning-based methods have been introduced to treat drug-target interaction (DTI) prediction as a classification task. The output of this task is binary identification suggesting the absence or presence of interactions. However, existing studies often (i) neglect the unique molecular attributes when embedding drugs and proteins, and (ii) determine the interaction of drug-target pairs without considering biological interaction information. Results: In this study, we propose an end-to-end attention-derived method based on the self-attention mechanism and graph neural network, termed SAGDTI. The aim of this method is to overcome the aforementioned drawbacks in the identification of DTI. SAGDTI is the first method to sufficiently consider the unique molecular attribute representations for both drugs and targets in the input form of the SMILES sequences and three-dimensional structure graphs. In addition, our method aggregates the feature attributes of biological information between drugs and targets through multi-scale topologies and diverse connections. Experimental results illustrate that SAGDTI outperforms existing prediction models, which benefit from the unique molecular attributes embedded by atom-level attention and biological interaction information representation aggregated by node-level attention. Moreover, a case study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shows that our model is a powerful tool for identifying DTIs in real life. Availability and implementation: The data and codes underlying this article are available in Github at https://github.com/lixiaokun2020/SAGDTI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...