Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124252, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38593541

RESUMO

The symmetrically double-armed salamo type fluorescent sensor BMS, incorporating benzimidazole units, was designed and synthesized. Showcasing remarkable specificity and responsiveness to MnO4- within a DMSO:H2O (V/V = 9:1, pH = 7.2) Tris-HCl buffer medium, it enabled dual-channel detection of MnO4- through fluorescent and colorimetric changes. Critical experimental parameters, including detection and quantification thresholds (LOD and LOQ) along with binding affinity constants (Ka), were calculated using the Origin software. A rational interaction mechanism between BMS and MnO4- was deduced, based on fluorescence titration, Electrospray Ionization Mass Spectrometry (ESI-MS), Ultraviolet-Visible Spectroscopy (UV-Vis), Infrared Spectroscopy (IR), Stern-Volmer plots, and Density Functional Theory (DFT) computations. Additionally, the sensor BMS was applied to monitor MnO4- in real water samples. Advancing its practical utility, BMS was fabricated into test strips for the selective detecting of MnO4-.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124187, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38547781

RESUMO

A bis(salamo)-like chemical sensor H3L ((1E,3E)-2-hydroxy-5-methylisophthalaldehyde O,O -di(3-((((E)-(2-hydroxynaphthalen-1-yl)methylene)amino)oxy)propyl) dioxime) was constructed. H3L is capable of recognizing B4O72- in H2O/DMF (1:9, v/v) solution by both fluorescent and colorimetric channels, bright green fluorescence was turned on when B4O72- was added to H3L and changed from colorless to yellow in natural light. The detection limit was 3.21 × 10-8 M. The identification has good anti-interfering ability, quickly responsive time (5 S) and broad pH detecting range (pH = 5-12). The mechanism of action was determined by 1H NMR titration, infrared spectrometry, HRMS spectra and further elucidated by theory calculations. The fluorescence imaging of bean sprouts and spiked recovery assays of actual water samples demonstrated the practical use of sensor H3L for the detection of B4O72-, which is expected to have applications for the detection of B4O72- in plants and the environment.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 123839, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417235

RESUMO

An innovative salamo-like fluorescent chemical sensor H2L, has been prepared that can be utilized to selectively detect Cu2+ and B4O72- ions. Cu2+ ions can bind to oxime state nitrogen and phenol state oxygen atoms in the chemosensor H2L, triggering the LMCT effect leading to fluorescence enhancement. The crystal structure of the copper(II) complex, named as [Cu(L)], has been achieved via X-ray crystallography, and the sensing mechanism has been confirmed by further theoretical calculations with DFT. Besides, the sensor H2L recognizes B4O72- ions causing an ICT effect resulting in bright blue fluorescence. Moreover, the sensor has relatively high selectivity and sensitivity for Cu2+ and B4O72- ions, and the detection limits are 1.02 × 10-7 and 2.06 × 10-7 M, respectively. In addition, the good biocompatibility and excellent water solubility of the sensor H2L make it very advantageous in practical applications, using H2L powder for fingerprint visualization, using H2L to identify the phenomenon of B4O72- ions emitting bright blue fluorescence, making it an ink that can print encrypted messages on A4 paper, in addition to this, based on H2L, the real water sample was tested for Cu2+ ion recognition, and finally the test strip experiment was carried out.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123909, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38245967

RESUMO

A unique fluorescent probe Ni-DAS was developed by a nitrogenous heterocyclic oligo(N,O-donor) salamo-based compound DAS. DAS exhibits AIE and ESIPT effects which are extremely infrequent in salamo-based multi-oxime compounds. In addition, Ni-DAS can be used as a fluorescent probe with high selectivity and sensitivity to recognize Cr2O72- in DMF with 80 % water content, which enhances the value of the probe for application in real environments, and outperforms most similar molecular fluorescence probes. The probe Ni-DAS can recognize Cr2O72- by oxidative hydrolysis of C = N bonds, which promotes further research on theory of C = N bond hydrolysis, and the binding ratio and recognition mechanism were verified and supported by relevant theoretical calculations (DFT & MESP). The experiments showed that the probe Ni-DAS can be used for ion detection in real environments. It provides a new strategy for the oxidative hydrolysis of C = N bond and the structure of salamo-based compounds with AIE nature, and offers new ideas for study ion recognition and acidity detection.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123159, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478709

RESUMO

A newly designed and synthesized Salamo-Salen-Salamo-Zn(II) complex sensor (sensor ZT) was extensively explored for anion sensing studies. The selectivity and sensitivity of the sensor ZT towards H2PO4- ions were based on ICT and CHEF effects, and via displacement pathways in DMSO/H2O (9:1, v/v) medium in the presence of other anions like, PO43-, HPO42- and P2O74- in a short time, separately. The prepared ZT sensor has excellent association constant and low detection lines. The sensing mechanism and binding mode of the sensor were studied by UV-Vis spectroscopy, HR-MS, 1H NMR titration and theory calculations (DFT & TD-DFT) for analytes. The time response and stability of the sensor are also given. Meanwhile, the sensor ZT can be widely used as a simple and effective solid-state optical sensor to detect H2PO4- by intuitive fluorescence changes. In addition, besides the environment can be used as a powerful instrument for detecting H2PO4-, based on the good biocompatibility and tissue permeability of ZT, effectively monitoring H2PO4- in cellular distribution by confocal microscopy using Zebrafish and bean sprout.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Ânions , Corantes Fluorescentes/química , Zinco/química
6.
Inorg Chem ; 62(25): 9945-9963, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37311103

RESUMO

A flexible polydentate Salamo-Salen-Salamo hybrid ligand H4L was designed and synthesized, which has rich pockets (salamo and salen pockets) so that it may have fascinating coordination patterns with transition metal(II) ions. Four multinuclear transition metal(II) complexes, novel butterfly-shaped homotetranuclear [Ni4(L)(µ1-OAc)2(µ1,3-OAc)2(H2O)0.5(CH3CH2OH)3.5]·4CH3CH2OH (1), helical homotrinuclear [Zn3(L)(µ1-OAc)2]·2CH3CH2OH (2), double-helical homotrinuclear [Cu2(H2L)2]·2CH3CN (3), and mononuclear [Ni(H2L)]·1.5CH3COCH3 (4), have been synthesized and characterized by single-crystal X-ray diffraction. The effects of different anions [OAc- and (O2C5H7)2-] on the complexation behavior of H4L with transition metal(II) ions were studied by UV-vis spectrophotometry. The fluorescent properties of the four complexes were studied with zebrafish, which are expected to be a potential light-emitting material. Ultimately, interaction region indicator (IRI) valuations, Hirshfeld surface analyses, density functional theory (DFT & TD-DFT), electrostatic potential analyses (ESP), and simulations were carried out to further demonstrate the weak interactions and electronic properties of the free ligand and its four complexes.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121340, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35561444

RESUMO

A salamo-salen-salamo hybrid fluorescent chemical sensor (H4L) was synthesized and characterized. It exhibits high selectivity and sensitivity to Zn2+ in physiological pH range. Meanwhile, its zinc(II) complex (L-Zn2+) continuously responses phosphate anions in DMF/H2O (v/v, 9:1) solution. Moreover, the identification processes are explored using characterization methods such as UV-absorption spectra, IR spectra and ESI-MS spectrum. In addition, the coordination mechanism of H2PO4- and Zn2+ were successfully exploited to make the chemical sensor reproducible. In short, the sensors H4L and L-Zn2+ will be promising detection devices for Zn2+ and phosphate anions.


Assuntos
Etilenodiaminas , Fosfatos , Ânions , Corantes Fluorescentes/química , Zinco/química
8.
Inorg Chem ; 61(2): 1018-1030, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34967616

RESUMO

A half-conjugate polydentate Salamo-Salen hybrid ligand, H5L, containing two unique N2O2 pockets was first designed so that these metal ions in the complexes appear in different coordination modes. Two heterohexanuclear 3d-s double-helical cluster complexes, [Zn4Ca2L2(µ1-OAc)2(EtOH)2]·2EtOH (1; EtOH = ethanol) and [Zn4Sr2L2(µ2-OAc)2(MeOH)2]·2CH2Cl2 (2; MeOH = methanol), are reported that are formed through the reaction of H5L with zinc(II) and calcium(II) acetate or strontium(II) acetate, respectively. IR spectral analysis of the two complexes showed the existence of monodentate- and bidentate-coordinated acetate ions. The fluorescence properties of the ligand and its two heterohexanuclear complexes were explored in MeOH and water solutions, separately. In addition, theoretical calculations (density functional theory, interaction region indicator, and bond order) were performed to further understand the formation of a single-molecular double helix and the electron distribution characteristics of the two complexes.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120084, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34175756

RESUMO

A novel bifunctional-group multi-purpose dye probe p-TNS has been designed and synthesized. The probe p-TNS has unique excited-state intramolecular proton transfer (ESIPT) and resonance-assisted hydrogen bonding (RAHB) coupled system, was confirmed to detect cyanide and hydrazine by blocking the ESIPT effect. Cyanide can change the fluorescence of the solution from bright green to orange-red (116 nm Stokes shift), while hydrazine causes the bright green fluorescence to be quenched. The recognition mechanism of the probe p-TNS to CN- and N2H4 was proposed reasonably through spectral characterizations and theoretical calculations. Combined with theoretical calculations, it was speculated that the solvent dependence may be caused by the ICT effect in the molecule. The probe p-TNS could be prepared into test strips for the detection of cyanide and hydrazine. In addition, the probe molecule can also be used to detect trace amounts of cyanide in agricultural products, and respond to gaseous hydrazine by direct contact, indicating that the probe p-TNS has good practical application prospects. Therefore, this molecular framework provides a new way of thinking about detecting multiple target substances.


Assuntos
Cianetos , Prótons , Corantes Fluorescentes , Hidrazinas , Ligação de Hidrogênio , Espectrometria de Fluorescência
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119815, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930852

RESUMO

Two novel single-armed nitrogen-heterocyclic chemosensors with basically similar structures, PDNS and PZNS, were synthesized to specifically identify Al3+ in DMS:H2O (1:1 v/v) solution by fluorescence emission spectroscopy, and the colour of PDNS and PZNS changed from yellow to colorless when Al3+ was added under daylight. This is the first time that nitrogen-heterocyclic is introduced into salamo-based chemical sensor. At excitation wavelengths of 361 and 365 nm, solutions of PDNS and PZNS changed to intense green-blue fluorescence. Furthermore, it was found that PDNS/PZNS and Al3+ have excellent binding capacity, the lower limit of detection (LOD = 6.25 × 10-9/1.26 × 10-9 mol·dm-3) is also calculated. In addition, sensor PZNS can detect Al3+ in a solution system with up to 95% water content and applicable pH range is 3-12. Compared to other salamo-based sensors, PZNS and PDNS have broader detection conditions and wider utilities. PZNS can also identify CN- in fluorescence spectrum. PZNS can be used for detection of Al3+ in aqueous systems in daily production and life.

11.
J Fluoresc ; 31(3): 817-833, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33738661

RESUMO

A new type of multifunctional bis(salamo)-based fluorogenic sensor H2BS was designed and synthesized. Under the action of VDMF: VH2O = 9: 1, the fluorogenic sensor can identify Cu2+ and B4O72-, in which N and O atoms can serve as binding sites for Cu2+ and B4O72-, the stoichiometry of the binding of the fluorogenic sensor H2BS and Cu2+ has been confirmed by titration experiment, working curve, ESI-MS analysis and DFT calculation. The pH response experiment also confirmed that the fluorogenic sensor can recognize Cu2+ and B4O72- in the pH range applicable to the physiological environment. The minimum detection limit of H2BS for Cu2+ and B4O72- recognition reaches 1.12 × 10-7 and 5.56 × 10-8 M, and the fluorogenic sensor H2BS has been successfully applied to Cu2+ detection in actual water samples, and the test strip for detecting Cu2+ and B4O72- was obtained. Meanwhile, the success of the test strip experiment made the fluorogenic sensor H2BS to recognize Cu2+ and B4O72- widely used in daily life. A new type of salamo-based multifunctional fluorogenic sensor H2BS was designed and synthesized to identify Cu2+ and B4O72- in aqueous solvent systems. Added Cu2+ to H2BS can cause fluorescence quenching. Further experiments showed that H2BS and Cu2+ form a stable 1:2 complex, while B4O72- can also cause fluorescence quenching of H2BS, which is the occurrence of the PET effect. Meanwhile, H2BS can be used for quantitative detection in the environment and rapid identification in life.

12.
Luminescence ; 36(1): 169-179, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32803847

RESUMO

An asymmetric salamo-based probe molecule (H2 L) was synthesized and characterized structurally. When DMF/H2 O (9:1) was used as the solvent, it was shown probe H2 L has high sensitivity to Cu2+ . Using high-resolution mass spectrometry and theoretical calculation, it was found that probe H2 L could form a more stable complex (1:1) with Cu2+ , the minimum limit of detection (LOD) of H2 L for Cu2+ was calculated as 9.95 × 10-8 M. In addition, probe H2 L could also be used to identify B4 O7 2- under the same detection conditions and the minimum LOD of H2 L for B4 O7 2- was calculated as 4.98 × 10-7 M. At the same time, density functional theory theoretical calculation further proved the flexibility of probe H2 L. Through the action of EDTA, probe H2 L had a cyclic ability to recognize Cu2+ , and showed a better response in the physiological pH range; probe H2 L had the characteristics of fast recognition speed and high efficiency. In addition, with probe H2 L test paper for Cu2+ and B4 O7 2- , the effect was more obvious. Meanwhile, probe H2 L can be used to quantitatively detect Cu2+ in water samples.


Assuntos
Cobre , Corantes Fluorescentes , Limite de Detecção , Solventes , Água
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118496, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32470813

RESUMO

A new sensor H5L for continuous identification of Cu2+, Al3+ and lysine was synthesized by Schiff base reactions. The sensor could specifically recognized Cu2+ in the EtOH/H2O (1:1 v/v) solution by UV-vis spectra, and the binding constant with Cu2+ can reach 1011 M-1, meanwhile, it was found by the naked-eye that the color of the solution was changed from colorless to yellow. The copper complex L-Cu2+ formed by the sensor H5L and Cu2+ could further recognize Al3+ and lysine in the fluorescence spectra. The LOD values of the three objects were 2.67 × 10-8, 1.96 × 10-8 and 5.59 × 10-9 M, respectively. In addition, fluorescence intracellular images of Al3+ and lysine were performed and obtained satisfactory results.


Assuntos
Corantes Fluorescentes , Bases de Schiff , Cobre , Espectrometria de Fluorescência
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117927, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31855812

RESUMO

A novel bis(salamo)-type chemosensor H3L was synthesized and characterized. It was found that the sensor molecule can selectively recognize Cu2+, and its L-Cu2+ is highly sensitive to the detection of S2- anion, Arginine and Lysine when dissolved in ethanol solvent. The sensor H3L can be used to identify a relay sensor for Cu2+, while the L-Cu2+ recognizes S2- anion, Arginine and Lysine with high selectivity and sensitivity over an acceptable physiological pH range. The detection line of the sensor molecule H3L is 1.02 × 10-6 M, and its binding constant to Cu2+ is 1.54 × 106 M-1. The detection line of L-Cu2+ as a sensor is calculated as 5.57 × 10-7 M, and its binding constants with S2- anion, Arginine and Lysine are 2.80 × 105 M-1, 5.32 × 106 M-1 and 5.94 × 106 M-1, respectively. The crystal structure of the Cu(II) complex [Cu4(L)2(CH3OH)2]·2NO3 with the sensor molecule H3L has been determined by single crystal X-ray crystallography.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117775, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31718968

RESUMO

Two salamo-like copper(II) complex probes, L1-Cu2+ and L2-Cu2+, were designed and synthesized for sensitive and efficient identification of CN-. UV spectroscopy, high resolution mass spectrometry, RGB analysis and naked eye recognition were performed to explore their recognition mechanisms. High resolution mass spectra indicated that the probes L1-Cu2+ and L2-Cu2+ formed complexes with CN-. The two probes could recognize CN- by the naked eye and the color of the solution changed from light yellow to red. In terms of application, the contents of CN- in the environmental water samples were tested. In addition, the optimal pH ranges for probe detection of CN- were investigated by pH value measurement.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117209, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31200268

RESUMO

A new naphthalenediol-based bis(salamo)-type fluorescent probe H4L for Zn2+ and CN- was reported. Probe H4L showed a highly selective fluorescence enhancement toward Zn2+ over other metal ions including Cd2+, and obtained the L-Zn2+complex can only detect CN- in various anions. Their recognition mechanisms were explained by Job plots, fluorescent and UV-vis titrations, and theoretical calculations. The L-Zn2+complex has been synthesized and structurally characterized using Hirshfeld surface analysis, elemental analyses, IR, UV-Vis and fluorescent spectra. Additionally, the relay probe with the wide adaptability of pH range and excellent stability showed highly selectivity for CN- recognition.

17.
J Org Chem ; 84(4): 2234-2242, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30669841

RESUMO

α-Trichloromethylation of tertiary amines with trimethyl(trichloromethyl)silane by oxidative coupling, using DDQ as an oxidant, has been realized. The reaction is instantaneous, is scalable, and tolerates a broad range of functional groups and heteroarenes. The trichloromethylated products can be easily converted into ß,ß-dichloroamines, enamines, and α-amino acid esters under operationally simple conditions. This methodology provides an efficient alternative to the poisonous cyanation reactions for the synthesis of carboxylic acid and their derivatives.

18.
RSC Adv ; 9(70): 41298-41304, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540055

RESUMO

In this paper, a salamo-based copper(ii) complex probe L-Cu2+ was synthesized, which combined with copper(ii) ions to form L-Cu2+ for the detection of S2- and had a good fluorescence chemical response. Through spectral analysis, we found that S2- could be identified with high sensitivity and selectivity in the presence of various anions and could be used for the detection of S2- by the naked eye. With the addition of S2-, the solution color changed from colorless to bright yellow. UV absorption, fluorescence and other characterization methods were carried out, and the mechanism of action was determined. In addition, we performed a visual inspection of H2S gas, and the probe L-Cu2+ could detect S2- in the gas molecules, revealing its potential application value in biology and medicine.

19.
RSC Adv ; 9(64): 37331-37343, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-35542306

RESUMO

Four new hetero-pentanuclear 3d-4f complexes [Zn4(L)2La(NO3)2(OEt)(H2O)] (1), [Zn4(L)2Ce(NO3)2(OMe)(MeOH)] (2), [Zn4(L)2Pr(NO3)2(OEt)(EtOH)] (3) and [Zn4(L)2Nd(NO3)2(OMe)(MeOH)] (4) were synthesized by the reactions of a newly synthesized octadentate bis(salamo)-based tetraoxime ligand (H4L) with Zn(OAc)2·2H2O and Ln(NO3)3·6H2O (Ln = La, Ce, Pr and Nd), respectively, and characterized via elemental analyses, FT-IR, UV-Vis spectroscopy and single crystal X-ray crystallography. The X-ray crystallographic investigation revealed that all ZnII ions were located in N2O3 coordination spheres, and possessed a trigonal bipyramid coordination environment. The LnIII ion lay in an O8 coordination sphere, and adopted a distorted square antiprismatic coordination environment. Furthermore, supramolecular interactions and fluorescence properties were investigated.

20.
Sci Rep ; 8(1): 14058, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232405

RESUMO

A highly selective fluorescent sensor H4L based on a bis(salamo)-type compound with two N2O2 chelating moieties as ionophore was successfully developed. Sensor H4L was found to have excellent selectivity for B4O72- over many other anions (Br-, CI-, CN-, CO32-, HCO3-, H2PO4-, HSO4-, NO3-, OAc-, S2O3-, SCN-, SO42-, Hcy (homocysteine) and H2O2), and it exhibited an approximately 150-fold enhancement of the fluorescence response to B4O72- in Tris-HCl buffer (DMF/H2O = 9:1, v/v, pH = 7) solutions. Significantly, its fluorescence intensity was enhanced in a linear fashion with increasing concentrations of B4O72-. The detection limit of sensor H4L towards B4O72- was 8.61 × 10-7 M. The test strips could conveniently, efficiently and simply detect B4O72- ions in Tris-HCl buffer (DMF/H2O = 9:1, v/v, pH = 7) solutions. Furthermore, sensor H4L showed excellent membrane permeability in living cells, and it was successfully used to monitor intracellular B4O72- by confocal luminescence imaging.


Assuntos
Boratos/análise , Corantes Fluorescentes/síntese química , Água/química , Técnicas Biossensoriais , Corantes Fluorescentes/química , Limite de Detecção , Microscopia Confocal , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...