Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38671728

RESUMO

As an essential physiological indicator within the human body, noninvasive continuous blood pressure (BP) measurement is critical in the prevention and treatment of cardiovascular disease. However, traditional methods of blood pressure prediction using a single-wavelength Photoplethysmographic (PPG) have bottlenecks in further improving BP prediction accuracy, which limits their development in clinical application and dissemination. To this end, this study proposed a method to fuse a four-wavelength PPG and a BP prediction model based on the attention mechanism of a convolutional neural network and bidirectional long- and short-term memory (ACNN-BiLSTM). The effectiveness of a multi-wavelength PPG fusion method for blood pressure prediction was evaluated by processing PPG signals from 162 volunteers. The study compared the performance of the PPG signals with different individual wavelengths and using a multi-wavelength PPG fusion method in blood pressure prediction, assessed using mean absolute error (MAE), root mean squared error (RMSE) and AAMI-related criteria. The experimental results showed that the ACNN-BiLSTM model achieved a better MAE ± RMSE for a systolic BP and diastolic BP of 1.67 ± 5.28 and 1.15 ± 2.53 mmHg, respectively, when using the multi-wavelength PPG fusion method. As a result, the ACNN-BiLSTM blood pressure model based on multi-wavelength PPG fusion could be considered a promising method for noninvasive continuous BP measurement.

2.
Diagnostics (Basel) ; 13(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36900057

RESUMO

Due to the simplicity and convenience of PPG signal acquisition, the detection of the respiration rate based on the PPG signal is more suitable for dynamic monitoring than the impedance spirometry method, but it is challenging to achieve accurate predictions from low-signal-quality PPG signals, especially in intensive-care patients with weak PPG signals. The goal of this study was to construct a simple model for respiration rate estimation based on PPG signals using a machine-learning approach fusing signal quality metrics to improve the accuracy of estimation despite the low-signal-quality PPG signals. In this study, we propose a method based on the whale optimization algorithm (WOA) with a hybrid relation vector machine (HRVM) to construct a highly robust model considering signal quality factors to estimate RR from PPG signals in real time. To detect the performance of the proposed model, we simultaneously recorded PPG signals and impedance respiratory rates obtained from the BIDMC dataset. The results of the respiration rate prediction model proposed in this study showed that the MAE and RMSE were 0.71 and 0.99 breaths/min, respectively, in the training set, and 1.24 and 1.79 breaths/min, respectively, in the test set. Compared without taking signal quality factors into account, MAE and RMSE are reduced by 1.28 and 1.67 breaths/min, respectively, in the training set, and reduced by 0.62 and 0.65 breaths/min in the test set. Even in the nonnormal breathing range below 12 bpm and above 24 bpm, the MAE reached 2.68 and 4.28 breaths/min, respectively, and the RMSE reached 3.52 and 5.01 breaths/min, respectively. The results show that the model that considers the PPG signal quality and respiratory quality proposed in this study has obvious advantages and application potential in predicting the respiration rate to cope with the problem of low signal quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...