Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(7): 112765, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421622

RESUMO

Plant clock function relies on precise timing of gene expression through complex regulatory networks consisting of activators and repressors at the core of oscillators. Although TIMING OF CAB EXPRESSION 1 (TOC1) has been recognized as a repressor involved in shaping oscillations and regulating clock-driven processes, its potential to directly activate gene expression remains unclear. In this study, we find that OsTOC1 primarily acts as a transcriptional repressor for core clock components, including OsLHY and OsGI. Here, we show that OsTOC1 possesses the ability to directly activate the expression of circadian target genes. Through binding to the promoters of OsTGAL3a/b, transient activation of OsTOC1 induces the expression of OsTGAL3a/b, indicating its role as an activator contributing to pathogen resistance. Moreover, TOC1 participates in regulating multiple yield-related traits in rice. These findings suggest that TOC1's function as a transcriptional repressor is not inherent, providing flexibility to circadian regulations, particularly in outputs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Relógios Circadianos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas , Ritmo Circadiano/genética
2.
Plant Methods ; 17(1): 117, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774082

RESUMO

BACKGROUND: Realizing imaging detection of water and nitrogen content in different regions of plant leaves in-site and real-time can provide an efficient new technology for determining crop drought resistance and nutrient regulation mechanisms, or for use in precision agriculture. Near-infrared imaging is the preferred technology for in-situ real-time detection owing to its non-destructive nature; moreover, it provides rich information. However, the use of hyperspectral imaging technology is limited as it is difficult to use it in field because of its high weight and power. RESULTS: We developed a smart imaging device using a near-infrared camera and an interference filter; it has a low weight, requires low power, and has a multi-wavelength resolution. The characteristic wavelengths of the filter that realize leaf moisture measurement are 1150 and 1400 nm, respectively, the characteristic wavelength of the filter that realizes nitrogen measurement is 1500 nm, and all filter bandwidths are 25 nm. The prediction result of the average leaf water content model obtained with the device was R2 = 0.930, RMSE = 1.030%; the prediction result of the average nitrogen content model was R2 = 0.750, RMSE = 0.263 g. CONCLUSIONS: Using the average water and nitrogen content model, an image of distribution of water and nitrogen in different areas of corn leaf was obtained, and its distribution characteristics were consistent with the actual leaf conditions. The experimental materials used in this research were fresh leaves in the field, and the test was completed indoors. Further verification of applying the device and model to the field is underway.

3.
J Comput Biol ; 28(1): 60-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32286084

RESUMO

Cardiovascular and cerebrovascular diseases, which mainly consist of atherosclerosis (AS), are major causes of death. A great deal of research has been carried out to clarify the molecular mechanisms of AS. However, the etiology of AS remains poorly understood. To screen the potential genes of AS occurrence and development, GSE43292 and GSE57691 were obtained from the Gene Expression Omnibus (GEO) database in this study for bioinformatic analysis. First, GEO2R was used to identify differentially expressed genes (DEGs) and the functional annotation of DEGs was performed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The Search Tool for the Retrieval of Interacting Genes (STRING) tool was used to construct the protein-protein interaction network and the most important modules and core genes were mined. The results show that a total of 211 DEGs are identified. The functional changes of DEGs are mainly associated with the cellular process, catalytic activity, and protein binding. Eighteen genes were identified as core genes. Bioinformatic analysis showed that the core genes are mainly enriched in numerous processes related to actin. In conclusion, the DEGs and hub genes identified in this study may help us understand the potential etiology of the occurrence and development of AS.


Assuntos
Aterosclerose/genética , Redes Reguladoras de Genes , Genômica/métodos , Predisposição Genética para Doença , Humanos
4.
Plant Physiol ; 137(4): 1272-82, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15824286

RESUMO

Floral patterning in Papilionoideae plants, such as pea (Pisum sativum) and Medicago truncatula, is unique in terms of floral organ number, arrangement, and initiation timing as compared to other well-studied eudicots. To investigate the molecular mechanisms involved in the floral patterning in legumes, we have analyzed two mutants, proliferating floral meristem and proliferating floral organ-2 (pfo-2), obtained by ethyl methanesulfonate mutagenesis of Lotus japonicus. These two mutants showed similar phenotypes, with indeterminate floral structures and altered floral organ identities. We have demonstrated that loss of function of LjLFY and LjUFO/Pfo is likely to be responsible for these mutant phenotypes, respectively. To dissect the regulatory network controlling the floral patterning, we cloned homologs of the ABC function genes, which control floral organ identity in Arabidopsis (Arabidopsis thaliana). We found that some of the B and C function genes were duplicated. RNA in situ hybridization showed that the C function genes were expressed transiently in the carpel, continuously in stamens, and showed complementarity with the A function genes in the heterogeneous whorl. In proliferating floral meristem and pfo-2 mutants, all B function genes were down-regulated and the expression patterns of the A and C function genes were drastically altered. We conclude that LjLFY and LjUFO/Pfo are required for the activation of B function genes and function together in the recruitment and determination of petals and stamens. Our findings suggest that gene duplication, change in expression pattern, gain or loss of functional domains, and alteration of key gene functions all contribute to the divergence of floral patterning in L. japonicus.


Assuntos
Lotus/crescimento & desenvolvimento , Lotus/genética , Sequência de Aminoácidos , Sequência de Bases , Padronização Corporal/genética , DNA Complementar/genética , DNA de Plantas/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hibridização In Situ , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mutagênese , Mutação , Fenótipo , Filogenia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...