Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.209
Filtrar
1.
Talanta ; 278: 126480, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38972275

RESUMO

The prevalence of metabolic disorders has been found to increase concomitantly with alternations in habitual diet and lifestyle, indicating the importance of metabolic health monitoring for early warning of high-risk status and suggesting effective intervention strategies. Hippuric acid (HA), as one of the most abundant metabolites from the gut microbiota, holds potential as a regulator of metabolic health. Accordingly, it is imperative to establish an efficient, sensitive, and affordable method for large-scale population monitoring, revealing the association between HA level and metabolic disorders. Upon systematic screening of macrocycle•dye reporter pair, a supramolecular architecture (guanidinomethyl-modified calix[5]arene, GMC5A) was employed to sense urinary HA by employing fluorescein (Fl), whose complexation behavior was demonstrated by theoretical calculations, accomplishing quantification of HA in urine from 249 volunteers in the range of 0.10 mM and 10.93 mM. Excitedly, by restricted cubic spline, urinary HA concentration was found to have a significantly negative correlation with the risk of metabolic disorders when it exceeded 0.76 mM, suggesting the importance of dietary habits, especially the consumption of fruits, coffee, and tea, which was unveiled from a simple questionnaire survey. In this study, we accomplished a high throughput and sensitive detection of urinary HA based on supramolecular sensing with the GMC5A•Fl reporter pair, which sheds light on the rapid quantification of urinary HA as an indicator of metabolic health status and early intervention by balancing the daily diet.

3.
Nature ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961294

RESUMO

Social communication guides decision-making, which is essential for survival. Social transmission of food preference (STFP) is an ecologically relevant memory paradigm in which an animal learns a desirable food odour from another animal in a social context, creating a long-term memory1,2. How food-preference memory is acquired, consolidated and stored is unclear. Here we show that the posteromedial nucleus of the cortical amygdala (COApm) serves as a computational centre in long-term STFP memory consolidation by integrating social and sensory olfactory inputs. Blocking synaptic signalling by the COApm-based circuit selectively abolished STFP memory consolidation without impairing memory acquisition, storage or recall. COApm-mediated STFP memory consolidation depends on synaptic inputs from the accessory olfactory bulb and on synaptic outputs to the anterior olfactory nucleus. STFP memory consolidation requires protein synthesis, suggesting a gene-expression mechanism. Deep single-cell and spatially resolved transcriptomics revealed robust but distinct gene-expression signatures induced by STFP memory formation in the COApm that are consistent with synapse restructuring. Our data thus define a neural circuit for the consolidation of a socially communicated long-term memory, thereby mechanistically distinguishing protein-synthesis-dependent memory consolidation from memory acquisition, storage or retrieval.

4.
Nutr Diabetes ; 14(1): 52, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991999

RESUMO

OBJECTIVES: The present study aimed to investigate the relationship between male hormones and metabolic dysfunction-associated fatty liver disease (MAFLD) in males. METHODS: Data from the Fangchenggang Area Male Health and Examination Survey (FAMHES) were used to analyze the male hormone levels between MAFLD patients and controls. Univariate and multivariate logistic regression analyses were performed to identify risk factors for MAFLD. Receiver operating characteristic curve analysis was used to assess the diagnostic performance of male hormones for MAFLD. RESULT: A total of 1578 individuals were included, with 482 individuals (30.54%) of MAFLD, including 293 (18.57%) with mild disease and 189 (11.98%) with moderate-to-severe disease. The MAFLD patients were significantly older than those without MAFLD. The LH, FSH, and SHBG levels in the MAFLD patients were significantly greater than those in the control group. Age, FSH, LH, SHBG, and estradiol were all risk factors for MAFLD. Age, FSH, and LH were risk factors for moderate-to-severe MAFLD. FSH was an independent risk factor for MAFLD and moderate-to-severe MAFLD. FSH showed an excellent diagnostic value, with an AUC of 0.992 alone and 0.996 after adjusting age. CONCLUSIONS: Our findings indicate that FSH may be a potential diagnostic and predictive biomarker for MAFLD.


Assuntos
Hormônio Foliculoestimulante , Hormônio Luteinizante , Globulina de Ligação a Hormônio Sexual , Humanos , Masculino , Hormônio Foliculoestimulante/sangue , Pessoa de Meia-Idade , Adulto , Hormônio Luteinizante/sangue , Fatores de Risco , Globulina de Ligação a Hormônio Sexual/metabolismo , Globulina de Ligação a Hormônio Sexual/análise , Estradiol/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , China/epidemiologia , Estudos de Casos e Controles , Curva ROC , Biomarcadores/sangue , Fígado Gorduroso/sangue , Idoso
5.
EBioMedicine ; 106: 105242, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002385

RESUMO

BACKGROUND: Studies on DNA methylation following bariatric surgery have primarily focused on blood cells, while it is unclear to which extend it may reflect DNA methylation profiles in specific metabolically relevant organs such as adipose tissue. Here, we investigated whether adipose tissue depots specific methylation changes after bariatric surgery are mirrored in blood. METHODS: Using Illumina 850K EPIC technology, we analysed genome-wide DNA methylation in paired blood, subcutaneous and omental visceral AT (SAT/OVAT) samples from nine individuals (N = 6 female) with severe obesity pre- and post-surgery. FINDINGS: The numbers and effect sizes of differentially methylated regions (DMRs) post-bariatric surgery were more pronounced in AT (SAT: 12,865 DMRs from -11.5 to 10.8%; OVAT: 14,632 DMRs from -13.7 to 12.8%) than in blood (9267 DMRs from -8.8 to 7.7%). Cross-tissue DMRs implicated immune-related genes. Among them, 49 regions could be validated with similar methylation changes in blood from independent individuals. Fourteen DMRs correlated with differentially expressed genes in AT post bariatric surgery, including downregulation of PIK3AP1 in both SAT and OVAT. DNA methylation age acceleration was significantly higher in AT compared to blood, but remained unaffected after surgery. INTERPRETATION: Concurrent methylation pattern changes in blood and AT, particularly in immune-related genes, suggest blood DNA methylation mirrors AT's inflammatory state post-bariatric surgery. FUNDING: The funding sources are listed in the Acknowledgments section.

6.
Sci Rep ; 14(1): 16314, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009692

RESUMO

The benefits of physical exercise on human health make it desirable to identify new approaches that would mimic or potentiate the effects of exercise to treat metabolic diseases. However, whether far-infrared (FIR) hyperthermia therapy could be used as exercise mimetic to realize wide-ranging metabolic regulation, and its underling mechanisms remain unclear. Here, a specific far-infrared (FIR) rays generated from graphene-based hyperthermia devices might promote exercise capacity and metabolisms. The material characterization showed that the graphene synthesized by chemical vapour deposition (CVD) was different from carbon fiber, with single-layer structure and high electrothermal transform efficiency. The emission spectra generated by graphene-FIR device would maximize matching those adsorbed by tissues. Graphene-FIR enhanced both core and epidermal temperatures, leading to increased blood flow in the femoral muscle and the abdominal region. The combination of microbiomic and metabolomic analysis revealed that graphene-FIR modulates the metabolism of the gut-muscle axis. This modulation was characterized by an increased abundance of short-chain fatty acids (SCFA)-producing bacteria and AMP, while lactic acid levels decreased. Furthermore, the principal routes involved in glucose metabolism, such as glycolysis and gluconeogenesis, were found to be altered. Graphene-FIR managed to stimulate AMPK activity by activating GPR43, thus enhancing muscle glucose uptake. Furthermore, a microbiota disorder model also demonstrated that the graphene-FIR effectively restore the exercise endurance with enhanced p-AMPK and GLUT4. Our results provided convincing evidence that graphene-based FIR therapy promoted exercise capacity and glucose metabolism via AMPK in gut-muscle axis. These novel findings regarding the therapeutic effects of graphene-FIR suggested its potential utility as a mimetic agent in clinical management of metabolic disorders.


Assuntos
Glucose , Grafite , Homeostase , Raios Infravermelhos , Condicionamento Físico Animal , Animais , Camundongos , Glucose/metabolismo , Grafite/farmacologia , Grafite/química , Proteínas Quinases Ativadas por AMP/metabolismo , Masculino , Microbioma Gastrointestinal , Músculo Esquelético/metabolismo , Camundongos Endogâmicos C57BL , Hipertermia Induzida/métodos , Tolerância ao Exercício , Microbiota
7.
RSC Adv ; 14(32): 22877-22881, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39035717

RESUMO

Cellular mechanical force plays a crucial role in numerous biological processes, including wound healing, cell development, and metastasis. To enable imaging of intercellular tension, molecular tension probes were designed, which offer a simple and efficient method for preparing Au-DNA intercellular tension probes with universal applicability. The proposed approach utilizes gold nanoparticles linked to DNA hairpins, enabling sensitive visualization of cellular force in vitro. Specifically, the designed Au-DNA intercellular tension probe includes a molecular spring flanked by a fluorophore-quencher pair, which is anchored between cells. As intercellular forces open the hairpin, the fluorophore is de-quenched, allowing for visualization of cellular force. The effectiveness of this approach was demonstrated by imaging the cellular force in living cells using the designed Au-DNA intercellular tension probe.

8.
Cancer Lett ; 597: 217058, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880226

RESUMO

OBJECTIVE: N6-methyladenosine (M6A) is the most prevalent epigenetic alteration. Methyltransferase-like 3 (METTL3) is a key player in the control of M6A modification. Methyltransferase promote the processing of mature miRNA in an M6A-dependent manner, thereby participating in disease occurrence and development. However, the regulatory mechanism of M6A in NK/T cell lymphoma (NKTCL) remains unclear. PATIENTS AND METHODS: We determined the expression of METTL3 and its correlation with clinicopathological features using qRT-PCR and immunohistochemistry. We evaluated the effects of METTL3 on NKTCL cells using dot blot assay, CCK8 assay and subcutaneous xenograft experiment. We then applied M6A sequencing combined with gene expression omnibus data to screen candidate targets of METTL3. Finally, we investigated the regulatory mechanism of METTL3 in NKTCL by methylated RNA immunoprecipitation and RNA immunoprecipitation (RIP) assays. RESULTS: We demonstrated that METTL3 was highly expressed in NKTCL cells and tissues and indicated poor prognosis. The METTL3 expression was associated with NKTCL survival. Functionally, METTL3 promoted the proliferation capability of NKTCL cells in vitro and in vivo. Furthermore, EBV-miR-BART3-3p was identified as the downstream effector of METTL3, and silencing EBV-miR-BART3-3p inhibited the proliferation of NKTCL. Finally, we confirmed that PLCG2 as a target gene of EBVmiR-BART3-3p by relative assays. CONCLUSIONS: We identified that METTL3 is significantly up-regulated in NKTCL and promotes NKTCL development. M6A modification contributes to the progression of NKTCL via the METTL3/EBV-miR-BART3-3p/PLCG2 axis. Our study is the first to report that M6A methylation has a critical role in NKTCL oncogenesis, and could be a potential target for NKTCL treatment.

9.
Oncol Lett ; 28(2): 377, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38939622

RESUMO

[This retracts the article DOI: 10.3892/ol.2017.6728.].

10.
Chem Sci ; 15(22): 8506-8513, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846396

RESUMO

The modulation of emission color is one of the most critical topics in the research field of organic light-emitting diodes (OLEDs). Currently, only two ways are commonly used to tune the emission colors of OLEDs: one is to painstakingly synthesize different emitters with diverse molecular structures, the other is to precisely control the degree of aggregation or doping concentration of one emitter. To develop a simpler and less costly method, herein we demonstrate a new strategy in which the emission colors of OLEDs can be continuously changed with UV light during the device fabrication process. The proof of concept is established by a chromene-based Ir(iii) complex, which shows bright green emission and yellow emission before and after UV irradiation, respectively. Consequently, under different durations of UV irradiation, the resulting Ir(iii) complex is successfully used as the emitter to gradually tune the emission colors of related solution-processed OLEDs from green to yellow. Furthermore, the electroluminescent efficiencies of these devices are unaffected or even increased during this process. Therefore, this work demonstrates a distinctive point of view and approach for modulating the emission colors of OLEDs, which may prove great inspiration for the fabrication of multi-colored OLEDs with only one emitter.

11.
Cancer Lett ; 598: 217094, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38945204

RESUMO

Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.

12.
Sci Rep ; 14(1): 12166, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806604

RESUMO

In recent years, with the unremitting advancement of higher education reform, academics have been experiencing stress associated with conducting scientific research. In this study focusing on university teachers in China, we adopted a stepwise regression method and reviewed related literature to construct a mechanism of academic stress and occupational burnout. Specifically, we tested job satisfaction and relative deprivation as mediating and moderating variables and conducted empirical research on 1239 teachers from 15 universities in eastern, central, and western China. Our findings show that: (1) academic stress has a significant positive effect on occupational burnout; (2) job satisfaction has a partial role as the intermediary agent between academic stress and occupational burnout; and (3) relative deprivation positively moderates the relationship between academic stress and job satisfaction, indicating that teachers in universities and colleges are also affected by relative deprivation and the perception of inequity. These findings have significant value in the management of higher education and academic research.


Assuntos
Esgotamento Profissional , Satisfação no Emprego , Humanos , China/epidemiologia , Universidades , Esgotamento Profissional/psicologia , Esgotamento Profissional/epidemiologia , Masculino , Feminino , Adulto , Docentes/psicologia , Estresse Psicológico/psicologia , Inquéritos e Questionários , Pessoa de Meia-Idade
13.
World J Gastrointest Surg ; 16(4): 1184-1188, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38690059

RESUMO

BACKGROUND: Splenic rupture associated with Behçet's syndrome (BS) is extremely rare, and there is no consensus on its management. In this case report, a patient with BS-associated splenic rupture was successfully treated with splenic artery embolization (SAE) and had a good prognosis after the intervention. CASE SUMMARY: The patient was admitted for pain in the left upper abdominal quadrant. He was diagnosed with splenic rupture. Multiple oral and genital aphthous ulcers were observed, and acne scars were found on his back. He had a 2-year history of BS diagnosis, with symptoms of oral and genital ulcers. At that time, he was treated with oral corticosteroids for 1 month, but the symptoms did not alleviate. He underwent SAE to treat the rupture. On the first day after SAE, the patient reported a complete resolution of abdominal pain and was discharged 5 d later. Three months after the intervention, a computed tomography examination showed that the splenic hematoma had formed a stable cystic effusion, suggesting a good prognosis. CONCLUSION: SAE might be a good choice for BS-associated splenic rupture based on good surgical practice and material selection.

14.
Water Res ; 257: 121695, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723352

RESUMO

Wolframite (FeWO4), a typical polyoxometalate, serves as an auspicious candidate for heterogeneous catalysts, courtesy of its high chemical stability and electronic properties. However, the electron-deficient surface-active Fe species in FeWO4 are insufficient to cleave H2O2 via Fe redox-mediated Fenton-like catalytic reaction. Herein, we doped Sulfur (S) atom into FeWO4 catalysts to refine the electronic structure of FeWO4 for H2O2 activation and sulfamethoxazole (SMX) degradation. Furthermore, spin-state reconstruction on S-doped FeWO4 was found to effectively refine the electronic structure of Fe in the d orbital, thereby enhancing H2O2 activation. S doping also accelerated electron transfer during the conversion of sulfur species, promoting the cycling of Fe(III) to Fe(II). Consequently, S-doped FeWO4 bolstered the Fenton-like reaction by nearly two orders of magnitude compared to FeWO4. Significantly, the developed S-doped FeWO4 exhibited a remarkable removal efficiency of approximately 100% for SMX within 40 min in real water samples. This underscores its extensive pH adaptability, robust catalytic stability, and leaching resistance. The matrix effects of water constituents on the performance of S-doped FeWO4 were also investigated, and the results showed that a certain amount of Cl-, SO42-, NO3-, HCO3- and PO43- exhibited negligible effects on the degradation of SMX. Theoretical calculations corroborate that the distinctive spin-state reconstruction of Fe center in S-doped FeWO4 is advantageous for H2O2 decomposition. This discovery offers novel mechanistic insight into the enhanced catalytic activity of S doping in Fenton-like reactions and paves the way for expanding the application of FeWO4 in wastewater treatment.


Assuntos
Enxofre , Poluentes Químicos da Água , Enxofre/química , Poluentes Químicos da Água/química , Compostos de Tungstênio/química , Peróxido de Hidrogênio/química , Catálise , Purificação da Água/métodos , Oxirredução , Ferro/química
15.
Eur Urol Oncol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762368

RESUMO

BACKGROUND AND OBJECTIVE: Combinations of immune checkpoint inhibitors and nab-paclitaxel have achieved significant therapeutic effects in the treatment of advanced urothelial carcinoma. Our aim was to assess the efficacy and safety of tislelizumab combined with low-dose nab-paclitaxel in patients with muscle-invasive bladder cancer (MIBC). METHODS: TRUCE-01 was a single-arm phase 2 study that included 62 patients with T2-4a N0/X M0 MIBC tumors with predominant urothelial carcinoma histology. Eligible patients received three 21-d cycles of intravenous 200 mg tislelizumab on day 1 plus intravenous 200 mg nab-paclitaxel on day 2, followed by surgical assessment. The primary study endpoint was a clinical complete response (cCR). Treatment-related adverse event (TRAE) profiles were recorded according to Common Terminology Criteria for Adverse Events version 5.0. KEY FINDINGS AND LIMITATIONS: The safety analysis included all 62 patients and the efficacy analysis included 48 patients. The primary efficacy endpoint (cCR) was met by 25 patients (52%) patients. Among the 62 patients in the safety analysis, six (9.7%) had grade ≥3 TRAEs. CONCLUSIONS: Tislelizumab combined with low-dose nab-paclitaxel showed promising antitumor effectiveness and was generally well tolerated, which makes it an excellent preoperative therapy option for MIBC. PATIENT SUMMARY: We found that a combination of the drugs tislelizumab and low-dose nab-paclitaxel had satisfactory efficacy and safety for preoperative treatment of muscle-invasive bladder cancer.

16.
Chin J Traumatol ; 27(4): 187-199, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631945

RESUMO

PURPOSE: The toughest challenge in pedestrian traffic accident identification lies in ascertaining injury manners. This study aimed to systematically simulate and parameterize 3 types of craniocerebral injury including impact injury, fall injury, and run-over injury, to compare the injury response outcomes of different injury manners. METHODS: Based on the total human model for safety (THUMS) and its enhanced human model THUMS-hollow structures, a total of 84 simulations with 3 injury manners, different loading directions, and loading velocities were conducted. Von Mises stress, intracranial pressure, maximum principal strain, cumulative strain damage measure, shear stress, and cranial strain were employed to analyze the injury response of all areas of the brain. To examine the association between injury conditions and injury consequences, correlation analysis, principal component analysis, linear regression, and stepwise linear regression were utilized. RESULTS: There is a significant correlation observed between each criterion of skull and brain injury (p < 0.01 in all Pearson correlation analysis results). A 2-phase increase of cranio-cerebral stress and strain as impact speed increases. In high-speed impact (> 40 km/h), the Von Mises stress on the skull was with a high possibility exceed the threshold for skull fracture (100 MPa). When falling and making temporal and occipital contact with the ground, the opposite side of the impacted area experiences higher frequency stress concentration than contact at other conditions. Run-over injuries tend to have a more comprehensive craniocerebral injury, with greater overall deformation due to more adequate kinetic energy conduction. The mean value of maximum principal strain of brain and Von Mises stress of cranium at run-over condition are 1.39 and 403.8 MPa, while they were 1.31, 94.11 MPa and 0.64, 120.5 MPa for the impact and fall conditions, respectively. The impact velocity also plays a significant role in craniocerebral injury in impact and fall loading conditions (the p of all F-test < 0.05). A regression equation of the craniocerebral injury manners in pedestrian accidents was established. CONCLUSION: The study distinguished the craniocerebral injuries caused in different manners, elucidated the biomechanical mechanisms of craniocerebral injury, and provided a biomechanical foundation for the identification of craniocerebral injury in legal contexts.


Assuntos
Acidentes de Trânsito , Traumatismos Craniocerebrais , Análise de Elementos Finitos , Pedestres , Humanos , Fenômenos Biomecânicos , Estresse Mecânico
17.
Small Methods ; : e2400223, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602202

RESUMO

Three dimensional (3D) extrusion bioprinting aims to replicate the complex architectures and functions of natural tissues and organs. However, the conventional hydrogel and new-emerging microgel bioinks are both difficult in achieving simultaneously high shape-fidelity and good maintenance of cell viability/function, leading to limited amount of qualified hydrogel/microgel bioinks. Herein, a universal strategy is reported to construct high-performance microgel assembly (MA) bioinks by using epigallocatechin gallate-modified hyaluronic acid (HA-EGCG) as coating agent and phenylboronic acid grafted hyaluronic acid (HA-PBA) as assembling agent. HA-EGCG can spontaneously form uniform coating on the microgel surface via mussel-inspired chemistry, while HA-PBA quickly forms dynamic phenylborate bonds with HA-EGCG, conferring the as-prepared MA bioinks with excellent rheological properties, self-healing, and tissue-adhesion. More importantly, this strategy is applicable to various microgel materials, enabling the preparation of homo- and heterogeneous MA (homo-MA and hetero-MA) bioinks and the hierarchical printing of complicated structures with high fidelity by integration of different microgels containing multiple materials/cells in spatial and compositional levels. It further demonstrates the printing of breast cancer organoid in vitro using homo-MA and hetero-MA bioinks and its preliminary application for drug testing. This universal strategy offers a new solution to construct high-performance bioinks for extrusion bioprinting.

18.
Heliyon ; 10(8): e29577, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655341

RESUMO

The rapid advancement of Micro-Electro-Mechanical Systems (MEMS) technology has established microfluidics as a pivotal field. This technology marks the onset of a new era in various applications, including drug testing, cell culture, and disease monitoring, underscoring its extensive practicality and potential for future exploration. This research delves into the intricate behavior of particle inertial migration within microchannels, particularly focusing on the impact of different channel structures and Reynolds numbers (Re). Our studies reveal that particles in microchannels with one-sided sharp-cornered microstructures migrate towards the sharp corner at a relative position of 0.4 under low flow rates, and towards the straight wall side at a relative position of 0.8 under high flow rates. The migration pattern of equilibrium positions varies with different arrangements of sharp-corner structures, achieving stability at the channel's center only when the sharp corners are symmetrically arranged on both sides. Our investigation into the shape of microstructures indicates that sharp-cornered structures generate a more stable secondary flow compared to rectangular and semi-circular structures, preventing particle aggregation at the outlet. To address the challenges associated with handling variable cross-section geometries and solid-wall boundaries in dissipative particle dynamics methods effectively, we have developed a dissipative particle dynamics model specifically for analyzing such microchannels. Building upon our previous research, this model introduces a conservative force coefficient for particles within the microstructured region and an interaction zone that only involves repulsive forces, aligning well with experimental outcomes. Through the study of microstructures' geometric shapes, this paper offers guidance for designing microchannels for particle enrichment. Furthermore, the dissipative particle dynamics model established for the particle flow and solid structure interaction within microstructured channels provides insights into the mesoscale dynamics of liquid-solid two-phase flow and particle motion. In conclusion, this paper aims to enhance particle motion sample preparation techniques, thereby broadening the scope of microfluidic applications in the biomedical field.

19.
Mol Neurobiol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664301

RESUMO

Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1ß and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.

20.
Drug Resist Updat ; 74: 101082, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569225

RESUMO

Molecular targeted drugs and chimeric antigen receptor (CAR) T cell therapy represent specific biological treatments that have significantly improved the efficacy of treating hematologic malignancies. However, they face challenges such as drug resistance and recurrence after treatment. Combining molecular targeted drugs and CAR-T cells could regulate immunity, improve tumor microenvironment (TME), promote cell apoptosis, and enhance sensitivity to tumor cell killing. This approach might provide a dual coordinated attack on cancer cells, effectively eliminating minimal residual disease and overcoming therapy resistance. Moreover, molecular targeted drugs can directly or indirectly enhance the anti-tumor effect of CAR-T cells by inducing tumor target antigen expression, reversing CAR-T cell exhaustion, and reducing CAR-T cell associated toxic side effects. Therefore, combining molecular targeted drugs with CAR-T cells is a promising and novel tactic for treating hematologic malignancies. In this review article, we focus on analyzing the mechanism of therapy resistance and its reversal of CAR-T cell therapy resistance, as well as the synergistic mechanism, safety, and future challenges in CAR-T cell therapy in combination with molecular targeted drugs. We aim to explore the benefits of this combination therapy for patients with hematologic malignancies and provide a rationale for subsequent clinical studies.


Assuntos
Neoplasias Hematológicas , Imunoterapia Adotiva , Terapia de Alvo Molecular , Microambiente Tumoral , Humanos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/tratamento farmacológico , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/tendências , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Terapia de Alvo Molecular/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Terapia Combinada/métodos , Receptores de Antígenos Quiméricos/imunologia , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...