Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 57(53): 6479-6482, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008638

RESUMO

We report for the first time the selective hydrogenation of 1,3-butadiene to butene using formic acid as the hydrogen source with 1 wt% Pd/carbon in a continuous flow reactor. The catalytic results show that the selectivity is even higher when formic acid is used compared to gas hydrogen.

2.
Nanomaterials (Basel) ; 9(8)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31382459

RESUMO

This short review aims at providing an overview of the most recent literature regarding transition metal nitrides (TMN) applied in heterogeneous catalysis. These materials have received renewed attention in the last decade due to its potential to substitute noble metals mainly in biomass and energy transformations, the decomposition of ammonia being one of the most studied reactions. The reactions considered in this review are limited to thermal catalysis. However the potential of these materials spreads to other key applications as photo- and electrocatalysis in hydrogen and oxygen evolution reactions. Mono, binary and exceptionally ternary metal nitrides have been synthetized and evaluated as catalysts and, in some cases, promoters are added to the structure in an attempt to improve their catalytic performance. The objective of the latest research is finding new synthesis methods that allow to obtain smaller metal nanoparticles and increase the surface area to improve their activity, selectivity and stability under reaction conditions. After a brief introduction and description of the most employed synthetic methods, the review has been divided in the application of transition metal nitrides in the following reactions: hydrotreatment, oxidation and ammonia synthesis and decomposition.

3.
J Colloid Interface Sci ; 355(1): 179-89, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21190698

RESUMO

Two graphitic carbon materials with different edge to basal plane ratio, high surface area graphite (HSAG) and graphitized carbon nanofibers (CNFs), were oxidized by two methods, aqueous-HNO(3) wet oxidation and oxygen plasma oxidation. Characterization of the materials by temperature-programmed desorption, thermogravimetry and X-ray photoelectron and Raman spectroscopies indicated that the amount and nature of oxygen surface groups introduced depended on the oxidation method and on the structure of the original material. While surface sites within the layers were only oxidized by oxygen plasma, surface sites at the edges of graphene layers were oxidized by both treatments being the wet oxidation more effective. Modification of the oxidized materials with a diamine or a triamine molecule resulted in the formation of ammonium carboxylate salt species on the carbon surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...