Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(19): e202304169, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270385

RESUMO

Helical nanographenes have garnered substantial attention owing to their finely adjustable optical and semiconducting properties. The strategic integration of both helicity and heteroatoms into the nanographene structure, facilitated by a boron-oxygen-based multiple resonance (MR) thermally activated delayed fluorescence (TADF), elevates its photophysical and chiroptical features. This signifies the introduction of an elegant category of helical nanographene that combines optical (TADF) and chiroptical (CPL) features. In this direction, we report the synthesis, optical, and chiroptical properties of boron, oxygen-doped Π-extended helical nanographene. The π-extension induces distortion in the DOBNA-incorporated nanographene, endowing a pair of helicenes, (P)-B2NG, and (M)-B2NG exhibiting circularly polarized luminescence with glum of -2.3×10-3 and +2.5×10-3, respectively. B2NG exhibited MR-TADF with a lifetime below 5 µs, and a reasonably high fluorescence quantum yield (50 %). Our molecular design enriches the optical and chiroptical properties of nanographenes and opens up new opportunities in multidisciplinary fields.

2.
Angew Chem Int Ed Engl ; 62(47): e202311657, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37782466

RESUMO

Recently, chiral and nonplanar cutouts of graphene have been the favorites due to their unique optical, electronic, and redox properties and high solubility compared with their planar counterparts. Despite the remarkable progress in helicenes, π-extended heterohelicenes have not been widely explored. As an anode in a lithium-ion battery, the racemic mixture of π-extended double heterohelical nanographene containing thienothiophene core exhibited a high lithium storage capability, attaining a specific capacity of 424 mAh g-1 at 0.1 A g-1 with excellent rate capability and superior long-term cycling performance over 6000 cycles with negligible fade. As a first report, the π-extended helicene isomer (PP and MM), with the more interlayer distance that helps faster diffusion of ions, has exhibited a high capacity of 300 mAh g-1 at 2 A g-1 with long-term cycling performance over 1500 cycles compared to the less performing MP and PM isomer and racemic mixture (150 mAh g-1 at 2 A g-1 ). As supported by single-crystal X-ray analysis, a unique molecular design of nanographenes with a fixed (helical) molecular geometry, avoiding restacking of the layers, renders better performance as an anode in lithium-ion batteries. Interestingly, the recycled nanographene anode material displayed comparable performance.

3.
Chem Asian J ; 18(13): e202300276, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37158669

RESUMO

The synthetic feasibility and excellent luminescence features of organic molecules attracted much attention and were eventually found useful in lighting applications. In this context, a solvent-free organic liquid having attractive thermally activated delayed fluorescence features in bulk along with high processability has prime importance. Herein, we report a series of naphthalene monoimide-based solvent-free organic liquids exhibiting cyan to red thermally activated delayed fluorescence with luminescence quantum yields up to 80% and lifetimes between 10 to 45 µs. An effective approach explored energy transfer between liquid donors with various emitters exhibiting tunable emission colors, including white. The high processability of liquid emitters improved the compatibility with polylactic acid and was used for developing multicolor emissive objects using 3D printing. Our demonstration of the thermally activated delayed fluorescence liquid will be much appreciated as a processable alternate emissive material suitable for large-area lighting, display, and related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...