Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979146

RESUMO

Decision-makers often process new evidence selectively, depending on their current beliefs about the world. We asked whether such confirmation biases result from biases in the encoding of sensory evidence in the brain, or alternatively in the utilization of encoded evidence for behavior. Human participants estimated the source of a sequence of visual-spatial evidence samples while we measured cortical population activity with magnetoencephalography (MEG). Halfway through the sequence, participants were prompted to judge the more likely source category. Their processing of subsequent evidence depended on its consistency with the previously chosen category, but the encoding of evidence in cortical activity did not. Instead, the encoded evidence in parietal and primary visual cortex contributed less to the estimation report when that evidence was inconsistent with the previous choice. We conclude that confirmation bias originates from the way in which decision-makers utilize information encoded in the brain. This provides room for deliberative control.

2.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38760163

RESUMO

Aging is accompanied by a decline of working memory, an important cognitive capacity that involves stimulus-selective neural activity that persists after stimulus presentation. Here, we unraveled working memory dynamics in older human adults (male and female) including those diagnosed with mild cognitive impairment (MCI) using a combination of behavioral modeling, neuropsychological assessment, and MEG recordings of brain activity. Younger adults (male and female) were studied with behavioral modeling only. Participants performed a visuospatial delayed match-to-sample task under systematic manipulation of the delay and distance between sample and test stimuli. Their behavior (match/nonmatch decisions) was fit with a computational model permitting the dissociation of noise in the internal operations underlying the working memory performance from a strategic decision threshold. Task accuracy decreased with delay duration and sample/test proximity. When sample/test distances were small, older adults committed more false alarms than younger adults. The computational model explained the participants' behavior well. The model parameters reflecting internal noise (not decision threshold) correlated with the precision of stimulus-selective cortical activity measured with MEG during the delay interval. The model uncovered an increase specifically in working memory noise in older compared with younger participants. Furthermore, in the MCI group, but not in the older healthy controls, internal noise correlated with the participants' clinically assessed cognitive integrity. Our results are consistent with the idea that the stability of working memory contents deteriorates in aging, in a manner that is specifically linked to the overall cognitive integrity of individuals diagnosed with MCI.


Assuntos
Envelhecimento , Encéfalo , Magnetoencefalografia , Memória de Curto Prazo , Humanos , Masculino , Feminino , Memória de Curto Prazo/fisiologia , Idoso , Envelhecimento/fisiologia , Envelhecimento/psicologia , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Encéfalo/fisiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Cognição/fisiologia , Testes Neuropsicológicos , Idoso de 80 Anos ou mais , Modelos Neurológicos
3.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38670804

RESUMO

The 40 Hz auditory steady-state response (ASSR), an oscillatory brain response to periodically modulated auditory stimuli, is a promising, noninvasive physiological biomarker for schizophrenia and related neuropsychiatric disorders. The 40 Hz ASSR might be amplified by synaptic interactions in cortical circuits, which are, in turn, disturbed in neuropsychiatric disorders. Here, we tested whether the 40 Hz ASSR in the human auditory cortex depends on two key synaptic components of neuronal interactions within cortical circuits: excitation via N-methyl-aspartate glutamate (NMDA) receptors and inhibition via gamma-amino-butyric acid (GABA) receptors. We combined magnetoencephalography (MEG) recordings with placebo-controlled, low-dose pharmacological interventions in the same healthy human participants (13 males, 7 females). All participants exhibited a robust 40 Hz ASSR in auditory cortices, especially in the right hemisphere, under a placebo. The GABAA receptor-agonist lorazepam increased the amplitude of the 40 Hz ASSR, while no effect was detectable under the NMDA blocker memantine. Our findings indicate that the 40 Hz ASSR in the auditory cortex involves synaptic (and likely intracortical) inhibition via the GABAA receptor, thus highlighting its utility as a mechanistic signature of cortical circuit dysfunctions involving GABAergic inhibition.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Neurônios GABAérgicos , Magnetoencefalografia , Humanos , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiologia , Masculino , Feminino , Adulto , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/efeitos dos fármacos , Adulto Jovem , Inibição Neural/fisiologia , Inibição Neural/efeitos dos fármacos , Estimulação Acústica
4.
Phys Rev Lett ; 132(9): 093402, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489609

RESUMO

Engineering pairs of massive particles that are simultaneously correlated in their external and internal degrees of freedom is a major challenge, yet essential for advancing fundamental tests of physics and quantum technologies. In this Letter, we experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes. This mechanism couples atoms from a degenerate Bose gas via a superradiant photon-exchange process in an optical cavity, producing pairs via a single channel or two discernible channels. The scheme is independent of collisional interactions, fast, and tunable. We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space. We characterize the emergent pair statistics and find that the observed dynamics is consistent with being primarily seeded by vacuum fluctuations in the corresponding atomic modes. Together with our observations of coherent many-body oscillations involving well-defined momentum modes, our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments using entangled matter waves.

5.
Elife ; 122023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054952

RESUMO

Decisions under uncertainty are often biased by the history of preceding sensory input, behavioral choices, or received outcomes. Behavioral studies of perceptual decisions suggest that such history-dependent biases affect the accumulation of evidence and can be adapted to the correlation structure of the sensory environment. Here, we systematically varied this correlation structure while human participants performed a canonical perceptual choice task. We tracked the trial-by-trial variations of history biases via behavioral modeling and of a neural signature of decision formation via magnetoencephalography (MEG). The history bias was flexibly adapted to the environment and exerted a selective effect on the build-up (not baseline level) of action-selective motor cortical activity during decision formation. This effect added to the impact of the current stimulus. We conclude that the build-up of action plans in human motor cortical circuits is shaped by dynamic prior expectations that result from an adaptive interaction with the environment.


Assuntos
Magnetoencefalografia , Córtex Motor , Humanos , Viés , Incerteza
6.
Cell Rep ; 42(11): 113405, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37950868

RESUMO

Detection of deviant stimuli is crucial to orient and adapt our behavior. Previous work shows that deviant stimuli elicit phasic activation of the locus coeruleus (LC), which releases noradrenaline and controls central arousal. However, it is unclear whether the detection of behaviorally relevant deviant stimuli selectively triggers LC responses or other neuromodulatory systems (dopamine, serotonin, and acetylcholine). We combine human functional MRI (fMRI) recordings optimized for brainstem imaging with pupillometry to perform a mapping of deviant-related responses in subcortical structures. Participants have to detect deviant items in a "local-global" paradigm that distinguishes between deviance based on the stimulus probability and the sequence structure. fMRI responses to deviant stimuli are distributed in many cortical areas. Both types of deviance elicit responses in the pupil, LC, and other neuromodulatory systems. Our results reveal that the detection of task-relevant deviant items recruits the same multiple subcortical systems across computationally different types of deviance.


Assuntos
Tronco Encefálico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Locus Cerúleo/diagnóstico por imagem , Nível de Alerta , Pupila/fisiologia
7.
Phys Rev Lett ; 131(14): 143604, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862667

RESUMO

We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity as described by the open Tavis-Cummings model. In this hybrid light-matter system, the interplay between coherent and dissipative processes leads to superradiant pulses with a buildup of strong correlations, even for systems comprising hundreds to thousands of particles. A central feature of the mean-field dynamics is a self-reversal of two spin degrees of freedom due to an underlying time-reversal symmetry, which is broken by quantum fluctuations. We demonstrate a quench protocol that can maintain highly non-Gaussian states over long timescales. This general mechanism offers interesting possibilities for the generation and control of complex fluctuation patterns, as suggested for the improvement of quantum sensing protocols for dissipative spin amplification.

8.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398375

RESUMO

Quantifying the amount, content and direction of communication between brain regions is key to understanding brain function. Traditional methods to analyze brain activity based on the Wiener-Granger causality principle quantify the overall information propagated by neural activity between simultaneously recorded brain regions, but do not reveal the information flow about specific features of interest (such as sensory stimuli). Here, we develop a new information theoretic measure termed Feature-specific Information Transfer (FIT), quantifying how much information about a specific feature flows between two regions. FIT merges the Wiener-Granger causality principle with information-content specificity. We first derive FIT and prove analytically its key properties. We then illustrate and test them with simulations of neural activity, demonstrating that FIT identifies, within the total information flowing between regions, the information that is transmitted about specific features. We then analyze three neural datasets obtained with different recording methods, magneto- and electro-encephalography, and spiking activity, to demonstrate the ability of FIT to uncover the content and direction of information flow between brain regions beyond what can be discerned with traditional anaytical methods. FIT can improve our understanding of how brain regions communicate by uncovering previously hidden feature-specific information flow.

9.
Neuron ; 111(4): 571-584.e9, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36476977

RESUMO

Humans and non-human primates can flexibly switch between different arbitrary mappings from sensation to action to solve a cognitive task. It has remained unknown how the brain implements such flexible sensory-motor mapping rules. Here, we uncovered a dynamic reconfiguration of task-specific correlated variability between sensory and motor brain regions. Human participants switched between two rules for reporting visual orientation judgments during fMRI recordings. Rule switches were either signaled explicitly or inferred by the participants from ambiguous cues. We used behavioral modeling to reconstruct the time course of their belief about the active rule. In both contexts, the patterns of correlations between ongoing fluctuations in stimulus- and action-selective activity across visual- and action-related brain regions tracked participants' belief about the active rule. The rule-specific correlation patterns broke down around the time of behavioral errors. We conclude that internal beliefs about task state are instantiated in brain-wide, selective patterns of correlated variability.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Sinais (Psicologia) , Julgamento , Imageamento por Ressonância Magnética
10.
Nat Commun ; 13(1): 6015, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224207

RESUMO

Humans and other animals tend to repeat or alternate their previous choices, even when judging sensory stimuli presented in a random sequence. It is unclear if and how sensory, associative, and motor cortical circuits produce these idiosyncratic behavioral biases. Here, we combined behavioral modeling of a visual perceptual decision with magnetoencephalographic (MEG) analyses of neural dynamics, across multiple regions of the human cerebral cortex. We identified distinct history-dependent neural signals in motor and posterior parietal cortex. Gamma-band activity in parietal cortex tracked previous choices in a sustained fashion, and biased evidence accumulation toward choice repetition; sustained beta-band activity in motor cortex inversely reflected the previous motor action, and biased the accumulation starting point toward alternation. The parietal, not motor, signal mediated the impact of previous on current choice and reflected individual differences in choice repetition. In sum, parietal cortical signals seem to play a key role in shaping choice sequences.


Assuntos
Tomada de Decisões , Córtex Motor , Animais , Comportamento de Escolha , Humanos , Magnetoencefalografia , Lobo Parietal
11.
Nature ; 608(7923): 494-498, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978131

RESUMO

Pumps are transport mechanisms in which direct currents result from a cyclic evolution of the potential1,2. As Thouless showed, the pumping process can have topological origins, when considering the motion of quantum particles in spatially and temporally periodic potentials3. However, the periodic evolution that drives these pumps has always been assumed to be imparted from outside, as has been the case in the experimental systems studied so far4-12. Here we report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator, where we observe a particle current without applying a periodic drive. The pumping potential experienced by the atoms is formed by the self-consistent cavity field interfering with the static laser field driving the atoms. Owing to dissipation, the cavity field evolves between its two quadratures13, each corresponding to a different centrosymmetric crystal configuration14. This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models, such as the paradigmatic Rice-Mele pump15. In the experiment, we directly follow the evolution by measuring the phase winding of the cavity field with respect to the driving field and observing the atomic motion in situ. The observed mechanism combines the dynamics of topological and open systems, and features characteristics of continuous dissipative time crystals.

12.
Sci Rep ; 12(1): 14279, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995805

RESUMO

Dopa-responsive dystonia (DRD) is caused by an impaired dopamine biosynthesis due to a GTP-cyclohydrolase-1 (GCH1) deficiency, resulting in a combination of dystonia and parkinsonism. However, the effect of GCH1 mutations and levodopa treatment on motor control beyond simple movements, such as timing, action preparation and feedback processing, have not been investigated so far. In an active time estimation task with trial-by-trial feedback, participants indicated a target interval (1200 ms) by a motor response. We compared 12 patients tested (in fixed order) under their current levodopa medication ("ON") and after levodopa withdrawal ("OFF") to matched healthy controls (HC), measured twice to control for repetition effects. We assessed time estimation accuracy, trial-to-trial adjustment, as well as task- and feedback-related pupil-linked arousal responses. Patients showed comparable time estimation accuracy ON medication as HC but reduced performance OFF medication. Task-related pupil responses showed the reverse pattern. Trial-to-trial adjustments of response times were reduced in DRD, particularly OFF medication. Our results indicate differential alterations of time estimation accuracy and task-related arousal dynamics in DRD patients as a function of dopaminergic medication state. A medication-independent alteration of task repetition effects in DRD cannot be ruled out with certainty but is discussed as less likely.


Assuntos
Distúrbios Distônicos , Levodopa , Nível de Alerta , Estudos de Casos e Controles , GTP Cicloidrolase/genética , Humanos , Levodopa/uso terapêutico
13.
Phys Rev Lett ; 128(15): 153601, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499900

RESUMO

Three-level atomic systems coupled to light have the capacity to host dark states. We study a system of V-shaped three-level atoms coherently coupled to the two quadratures of a dissipative cavity. The interplay between the atomic level structure and dissipation makes the phase diagram of the open system drastically different from the closed one. In particular, it leads to the stabilization of a continuous family of dark and nearly dark excited many-body states with inverted atomic populations as the steady states. The multistability of these states can be probed via their distinct fluctuations and excitation spectra, as well as the system's Liouvillian dynamics which are highly sensitive to ramp protocols. Our model can be implemented experimentally by encoding the two higher-energy modes in orthogonal density-modulated states in a bosonic quantum gas. This implementation offers prospects for potential applications like the realization of quantum optical random walks and microscopy with subwavelength spatial resolution.

14.
Phys Rev Lett ; 128(14): 143602, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476481

RESUMO

We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity. The photon field inducing the tunneling processes is subject to cavity dissipation, resulting in effective directional dynamics in a non-Hermitian setting. We observe that the individual tunneling events are superradiant in nature and locally resolve them in the lattice by performing real-time, frequency-resolved measurements of the leaking cavity field. The results can be extended to a regime exhibiting a cascade of currents and simultaneous coherences between multiple lattice sites, where numerical simulations provide further understanding of the dynamics. Our observations showcase dynamical tunneling in momentum-space lattices and provide prospects to realize dynamical gauge fields in driven-dissipative settings.

15.
Elife ; 112022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133276

RESUMO

Fluctuations in arousal, controlled by subcortical neuromodulatory systems, continuously shape cortical state, with profound consequences for information processing. Yet, how arousal signals influence cortical population activity in detail has so far only been characterized for a few selected brain regions. Traditional accounts conceptualize arousal as a homogeneous modulator of neural population activity across the cerebral cortex. Recent insights, however, point to a higher specificity of arousal effects on different components of neural activity and across cortical regions. Here, we provide a comprehensive account of the relationships between fluctuations in arousal and neuronal population activity across the human brain. Exploiting the established link between pupil size and central arousal systems, we performed concurrent magnetoencephalographic (MEG) and pupillographic recordings in a large number of participants, pooled across three laboratories. We found a cascade of effects relative to the peak timing of spontaneous pupil dilations: Decreases in low-frequency (2-8 Hz) activity in temporal and lateral frontal cortex, followed by increased high-frequency (>64 Hz) activity in mid-frontal regions, followed by monotonic and inverted U relationships with intermediate frequency-range activity (8-32 Hz) in occipito-parietal regions. Pupil-linked arousal also coincided with widespread changes in the structure of the aperiodic component of cortical population activity, indicative of changes in the excitation-inhibition balance in underlying microcircuits. Our results provide a novel basis for studying the arousal modulation of cognitive computations in cortical circuits.


Assuntos
Nível de Alerta/fisiologia , Encéfalo/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Magnetoencefalografia/métodos , Neurônios/fisiologia , Pupila/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Cognição , Feminino , Humanos , Masculino
16.
Hum Brain Mapp ; 43(4): 1265-1279, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34816533

RESUMO

While functional magnetic resonance imaging (fMRI) at ultra-high field (7 T) promises a general increase in sensitivity compared to lower field strengths, the benefits may be most pronounced for specific applications. The current study aimed to evaluate the relative benefit of 7 over 3 T fMRI for the assessment of responses evoked in different brain regions by a well-controlled cognitive task. At 3 and 7 T, the same participants made challenging perceptual decisions about visual motion combined with monetary rewards for correct choices. Previous work on this task has extensively characterized the underlying cognitive computations and single-cell responses in cortical and subcortical structures. We quantified the evoked fMRI responses in extrastriate visual cortical areas, the striatum, and the brainstem during the decision interval and the post-feedback interval of the task. The dependence of response amplitudes on field strength during the decision interval differed between cortical, striatal, and brainstem regions, with a generally bigger 7 versus 3 T benefit in subcortical structures. We also found stronger responses during relatively easier than harder decisions at 7 T for dopaminergic midbrain nuclei, in line with reward expectation. Our results demonstrate the potential of 7 T fMRI for illuminating the contribution of small brainstem nuclei to the orchestration of cognitive computations in the human brain.


Assuntos
Tronco Encefálico , Corpo Estriado , Tomada de Decisões/fisiologia , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Percepção de Movimento/fisiologia , Recompensa , Córtex Visual , Adulto , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/fisiologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiologia , Feminino , Humanos , Masculino , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adulto Jovem
17.
Sci Adv ; 7(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34272245

RESUMO

Influential theories postulate distinct roles of catecholamines and acetylcholine in cognition and behavior. However, previous physiological work reported similar effects of these neuromodulators on the response properties (specifically, the gain) of individual cortical neurons. Here, we show a double dissociation between the effects of catecholamines and acetylcholine at the level of large-scale interactions between cortical areas in humans. A pharmacological boost of catecholamine levels increased cortex-wide interactions during a visual task, but not rest. An acetylcholine boost decreased interactions during rest, but not task. Cortical circuit modeling explained this dissociation by differential changes in two circuit properties: the local excitation-inhibition balance (more strongly increased by catecholamines) and intracortical transmission (more strongly reduced by acetylcholine). The inferred catecholaminergic mechanism also predicted noisier decision-making, which we confirmed for both perceptual and value-based choice behavior. Our work highlights specific circuit mechanisms for shaping cortical network interactions and behavioral variability by key neuromodulatory systems.

18.
Nat Neurosci ; 24(7): 987-997, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33903770

RESUMO

Many decisions under uncertainty entail the temporal accumulation of evidence that informs about the state of the environment. When environments are subject to hidden changes in their state, maximizing accuracy and reward requires non-linear accumulation of evidence. How this adaptive, non-linear computation is realized in the brain is unknown. We analyzed human behavior and cortical population activity (measured with magnetoencephalography) recorded during visual evidence accumulation in a changing environment. Behavior and decision-related activity in cortical regions involved in action planning exhibited hallmarks of adaptive evidence accumulation, which could also be implemented by a recurrent cortical microcircuit. Decision dynamics in action-encoding parietal and frontal regions were mirrored in a frequency-specific modulation of the state of the visual cortex that depended on pupil-linked arousal and the expected probability of change. These findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related feedback to the sensory cortex.


Assuntos
Córtex Cerebral/fisiologia , Tomada de Decisões/fisiologia , Adulto , Feminino , Humanos , Magnetoencefalografia , Masculino , Modelos Neurológicos
19.
Cereb Cortex ; 31(7): 3565-3578, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33822917

RESUMO

Central to human and animal cognition is the ability to learn from feedback in order to optimize future rewards. Such a learning signal might be encoded and broadcasted by the brain's arousal systems, including the noradrenergic locus coeruleus. Pupil responses and the positive slow wave component of event-related potentials reflect rapid changes in the arousal level of the brain. Here, we ask whether and how these variables may reflect surprise: the mismatch between one's expectation about being correct and the outcome of a decision, when expectations fluctuate due to internal factors (e.g., engagement). We show that during an elementary decision task in the face of uncertainty both physiological markers of phasic arousal reflect surprise. We further show that pupil responses and slow wave event-related potential are unrelated to each other and that prediction error computations depend on feedback awareness. These results further advance our understanding of the role of central arousal systems in decision-making under uncertainty.


Assuntos
Nível de Alerta/fisiologia , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Potenciais Evocados/fisiologia , Feedback Formativo , Reflexo Pupilar/fisiologia , Adolescente , Eletroencefalografia , Feminino , Humanos , Aprendizagem , Masculino , Pupila/fisiologia , Incerteza , Adulto Jovem
20.
J Neurophysiol ; 125(4): 1468-1481, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689508

RESUMO

Many decisions result from the accumulation of decision-relevant information (evidence) over time. Even when maximizing decision accuracy requires weighting all the evidence equally, decision-makers often give stronger weight to evidence occurring early or late in the evidence stream. Here, we show changes in such temporal biases within participants as a function of intermittent judgments about parts of the evidence stream. Human participants performed a decision task that required a continuous estimation of the mean evidence at the end of the stream. The evidence was either perceptual (noisy random dot motion) or symbolic (variable sequences of numbers). Participants also reported a categorical judgment of the preceding evidence half-way through the stream in one condition or executed an evidence-independent motor response in another condition. The relative impact of early versus late evidence on the final estimation flipped between these two conditions. In particular, participants' sensitivity to late evidence after the intermittent judgment, but not the simple motor response, was decreased. Both the intermittent response as well as the final estimation reports were accompanied by nonluminance-mediated increases of pupil diameter. These pupil dilations were bigger during intermittent judgments than simple motor responses and bigger during estimation when the late evidence was consistent than inconsistent with the initial judgment. In sum, decisions activate pupil-linked arousal systems and alter the temporal weighting of decision evidence. Our results are consistent with the idea that categorical choices in the face of uncertainty induce a change in the state of the neural circuits underlying decision-making.NEW & NOTEWORTHY The psychology and neuroscience of decision-making have extensively studied the accumulation of decision-relevant information toward a categorical choice. Much fewer studies have assessed the impact of a choice on the processing of subsequent information. Here, we show that intermittent choices during a protracted stream of input reduce the sensitivity to subsequent decision information and transiently boost arousal. Choices might trigger a state change in the neural machinery for decision-making.


Assuntos
Tomada de Decisões/fisiologia , Julgamento/fisiologia , Conceitos Matemáticos , Percepção de Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Psicofísica , Percepção Espacial/fisiologia , Adulto , Humanos , Pupila/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...