Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 98(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32776133

RESUMO

This experiment investigated phenotypic and genetic relationships between carbon dioxide production, methane emission, feed intake, and postweaning traits in Angus cattle. Respiration chamber data on 1096 young bulls and heifers from 2 performance recording research herds of Angus cattle were analyzed to provide phenotypic and genetic parameters for carbon dioxide production rate (CPR; n = 425, mean 3,010 ± SD 589 g/d) and methane production rate (MPR; n = 1,096, mean 132.8 ± SD 25.2 g/d) and their relationships with dry matter intake (DMI; n = 1,096, mean 6.15 ± SD 1.33 kg/d), body weight (BW) and body composition traits. Heritability estimates were moderate to high for CPR (0.53 [SE 0.17]), MPR (0.31 [SE 0.07]), DMI (0.49 [SE 0.08]), yearling BW (0.46 [SE 0.08]), and scanned rib fat depth (0.42 [SE 0.07]). There was a strong phenotypic (0.83 [SE 0.02]) and genetic (0.75 [SE 0.10]) correlation between CPR and MPR. The correlations obtained for DMI with CPR and with MPR were high, both phenotypically (rp) and genetically (rg) (rp: 0.85 [SE 0.01] and 0.71 [SE 0.02]; rg (0.95 [SE 0.03] and 0.83 [SE 0.05], respectively). Yearling BW was strongly correlated phenotypically (rp ≥ 0.60) and genetically (rg > 0.80) with CPR, MPR, and DMI, whereas scanned rib fat was weakly correlated phenotypically (rp < 0.20) and genetically (rg ≤ 0.20) with CPR, MPR, and DMI. The strong correlation between both CPR and MPR with DMI confirms their potential use as proxies for DMI in situations where direct DMI recording is not possible such as on pasture.


Assuntos
Dióxido de Carbono/metabolismo , Bovinos/genética , Metano/metabolismo , Animais , Composição Corporal/genética , Peso Corporal/genética , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Feminino , Masculino , Fenótipo
2.
J Anim Sci ; 96(11): 4859-4867, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30060045

RESUMO

Angus cattle from 2 beef cattle projects on which carbon dioxide production rate (CPR) was measured were used in this study to examine the relationships among BW, DMI, and carbon dioxide traits of beef cattle fed ad libitum on a roughage diet or a grain-based feedlot diet, and to evaluate potential proxies for DMI and feed efficiency. In both projects, the GreenFeed Emission Monitoring system, which provides multiple short-term breath measures of carbon dioxide production, was used as a tool to measure CPR. The data were from 119 Angus heifers over 15 d on a roughage diet and 326 Angus steers over 70 d on a feedlot diet. Mean (±SD) age, BW, and DMI were 372 ± 28 d, 355 ± 37 kg, and 8.1 ± 1.3 kg/d for the heifers, and 554 ± 86 d, 577 ± 69 kg, and 13.3 ± 2.0 kg/d for the steers, respectively. The corresponding mean CPR was 5760 ± 644 g/d for heifers and 8939 ± 1212 g/d for steers. Other traits studied included carbon dioxide yield (CY; CPR/DMI) and intensity (CI; CPR/BW) and 5 forms of residual carbon dioxide production (RCP), which is a measure of actual minus predicted CPR. Feed efficiency traits studied included feed conversion ratio (FCR) and residual feed intake (RFI). The relationship between CPR and DMI, and between CPR and BW was both positive and linear, for the heifers and also for the steers. For the combined heifer and steer datasets, the R2 for the relationship between CPR and BW, and between CPR and DMI was 0.82 and 0.78, respectively. The correlation between CPR and DMI (r = 0.84 for heifers; r = 0.83 for steers) was similar to that between CPR and BW (r = 0.84 for heifers; r = 0.87 for steers). Most of the carbon dioxide traits were significantly (P < 0.05) correlated with one or both feed efficiency traits. One of the RCP traits (RCPMA) was computed by maintaining metabolic BW (M) and average daily gain (A) in the formula for RFI, but substituting the DMI with CPR. The correlation (r = 0.27) between RCPMA and RFI, though significantly different from zero, was not strong enough for its use as proxy for RFI. On the other hand, a strong correlation (r = 0.73) was obtained between the CPR to gain ratio (CGR) and FCR. This indicates that, where DMI is not available, CPR could be used in its place to compute a feed efficiency trait similar to FCR, since the computation of CGR was similar to that for FCR, except that DMI was substituted with CPR in the FCR formula.


Assuntos
Ração Animal/análise , Dióxido de Carbono/metabolismo , Bovinos/fisiologia , Ingestão de Alimentos , Comportamento Alimentar , Animais , Dieta/veterinária , Fibras na Dieta , Grão Comestível , Feminino , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...