Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 11(7): 2143-50, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24279373

RESUMO

Tubular scaffolds which incorporate a variety of micro- and nanotopographies have a wide application potential in tissue engineering especially for the repair of spinal cord injury (SCI). We aim to produce metabolically active differentiated tissues within such tubes, as it is crucially important to evaluate the biological performance of the three-dimensional (3D) scaffold and optimize the bioprocesses for tissue culture. Because of the complex 3D configuration and the presence of various topographies, it is rarely possible to observe and analyze cells within such scaffolds in situ. Thus, we aim to develop scaled down mini-chambers as simplified in vitro simulation systems, to bridge the gap between two-dimensional (2D) cell cultures on structured substrates and three-dimensional (3D) tissue culture. The mini-chambers were manipulated to systematically simulate and evaluate the influences of gravity, topography, fluid flow, and scaffold dimension on three exemplary cell models that play a role in CNS repair (i.e., cortical astrocytes, fibroblasts, and myelinating cultures) within a tubular scaffold created by rolling up a microstructured membrane. Since we use CNS myelinating cultures, we can confirm that the scaffold does not affect neural cell differentiation. It was found that heterogeneous cell distribution within the tubular constructs was caused by a combination of gravity, fluid flow, topography, and scaffold configuration, while cell survival was influenced by scaffold length, porosity, and thickness. This research demonstrates that the mini-chambers represent a viable, novel, scale down approach for the evaluation of complex 3D scaffolds as well as providing a microbioprocessing strategy for tissue engineering and the potential repair of SCI.


Assuntos
Técnicas de Cultura de Células/métodos , Sistema Nervoso Central/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Engenharia Tecidual/métodos , Cicatrização/fisiologia , Astrócitos/fisiologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Fibroblastos/fisiologia , Humanos , Porosidade , Próteses e Implantes , Alicerces Teciduais
2.
Tissue Eng Part A ; 19(3-4): 497-507, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22994455

RESUMO

Potential treatment strategies for the repair of spinal cord injury (SCI) currently favor a combinatorial approach incorporating several factors, including exogenous cell transplantation and biocompatible scaffolds. The use of scaffolds for bridging the gap at the injury site is very appealing although there has been little investigation into the central nervous system neural cell interaction and survival on such scaffolds before implantation. Previously, we demonstrated that aligned microgrooves 12.5-25 µm wide on ε-polycaprolactone (PCL) promoted aligned neurite orientation and supported myelination. In this study, we identify the appropriate substrate and its topographical features required for the design of a three-dimensional scaffold intended for transplantation in SCI. Using an established myelinating culture system of dissociated spinal cord cells, recapitulating many of the features of the intact spinal cord, we demonstrate that astrocytes plated on the topography secrete soluble factors(s) that delay oligodendrocyte differentiation, but do not prevent myelination. However, as myelination does occur after a further 10-12 days in culture, this does not prevent the use of PCL as a scaffold material as part of a combined strategy for the repair of SCI.


Assuntos
Regeneração Tecidual Guiada/instrumentação , Regeneração Nervosa/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Poliésteres/química , Alicerces Teciduais , Animais , Materiais Biocompatíveis/síntese química , Proliferação de Células , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/fisiologia
3.
Biomaterials ; 32(8): 2021-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21163522

RESUMO

Open pores to maintain nutrient diffusion and waste removal after cell colonization are crucial for the successful application of constructs based on assembled membranes, in our case tubular scaffolds made of ɛ-polycaprolactone (PCL), for use in tissue engineering. Due to the complex three-dimensional structure and large size of such scaffolds needed for transplantable tissues, it is difficult to investigate the cell-pore interactions in situ. Therefore miniaturized bioreactors inside Petri dishes (30 mm in diameter), containing porous PCL or poly-dimethylsiloxane (PDMS) membranes, were developed to allow the interactions of different cells with defined pores to be investigated in situ during both static and perfusion cultures. Investigation of two different cell types (fibroblasts and cortical astrocytes) and how they interact with a range of pores (100-350 µm in diameter) for up to 50 days indicated that the cells either 'covered' or 'bridged' the pores. Three distinct behaviors were observed in the way cortical astrocytes interacted with pores, while fibroblasts were able to quickly bridge the pores based on consistent "joint efforts". Our studies demonstrate that the distinct pore sealing behaviors of both cell types were influenced by pore size, initial cell density and culture period, but not by medium perfusion within the range of shear forces investigated. These findings form important basic data about the usability of pores within scaffolds that could inform the design and fabrication of suitable scaffolds for various applications in tissue engineering.


Assuntos
Astrócitos/metabolismo , Técnicas de Cultura de Células/métodos , Fibroblastos/metabolismo , Alicerces Teciduais/química , Animais , Astrócitos/citologia , Materiais Biocompatíveis/química , Técnicas de Cultura de Células/instrumentação , Córtex Cerebral/citologia , Dimetilpolisiloxanos/química , Fibroblastos/citologia , Teste de Materiais , Perfusão , Poliésteres/química , Porosidade , Ratos , Ratos Sprague-Dawley
4.
J Neurosci ; 26(33): 8600-8, 2006 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16914686

RESUMO

Stargazer (stg) mutant mice fail to express stargazin [transmembrane AMPA receptor regulatory protein gamma2 (TARPgamma2)] and consequently experience absence seizure-like thalamocortical spike-wave discharges that pervade the hippocampal formation via the dentate gyrus (DG). As in other seizure models, the dentate granule cells of stg develop elaborate reentrant axon collaterals and transiently overexpress brain-derived neurotrophic factor. We investigated whether GABAergic parameters were affected by the stg mutation in this brain region. GABA(A) receptor (GABAR) alpha4 and beta3 subunits were consistently upregulated, GABAR delta expression appeared to be variably reduced, whereas GABAR alpha1, beta2, and gamma2 subunits and the GABAR synaptic anchoring protein gephyrin were essentially unaffected. We established that the alpha4 betagamma2 subunit-containing, flunitrazepam-insensitive subtype of GABARs, not normally a significant GABAR in DG neurons, was strongly upregulated in stg DG, apparently arising at the expense of extrasynaptic alpha4 betadelta-containing receptors. This change was associated with a reduction in neurosteroid-sensitive GABAR-mediated tonic current. This switch in GABAR subtypes was not reciprocated in the tottering mouse model of absence epilepsy implicating a unique, intrinsic adaptation of GABAergic networks in stg. Contrary to previous reports that suggested that TARPgamma2 is expressed in the dentate, we find that TARPgamma2 was neither detected in stg nor control DG. We report that TARPgamma8 is the principal TARP isoform found in the DG and that its expression is compromised by the stargazer mutation. These effects on GABAergic parameters and TARPgamma8 expression are likely to arise as a consequence of failed expression of TARPgamma2 elsewhere in the brain, resulting in hyperexcitable inputs to the dentate.


Assuntos
Giro Denteado/metabolismo , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Camundongos Mutantes Neurológicos/metabolismo , Receptores de GABA-A/metabolismo , Animais , Canais de Cálcio/deficiência , Células Cultivadas , Giro Denteado/fisiopatologia , Eletrofisiologia , Epilepsia Tipo Ausência/fisiopatologia , Camundongos , Plasticidade Neuronal , Isoformas de Proteínas/metabolismo , Sinapses/metabolismo , Distribuição Tecidual , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...