Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37040185

RESUMO

Viral illnesses like SARS-CoV-2 have pathologic effects on nonrespiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting from SARS-CoV-2/COVID-19 or rhinovirus common cold infection. At low doses, COVID-19 cocktails induced glomerular injury and albuminuria in zinc fingers and homeoboxes 2 (Zhx2) hypomorph and Zhx2+/+ mice to mimic COVID-19-related proteinuria. Common Cold cocktail induced albuminuria selectively in Zhx2 hypomorph mice to model relapse of minimal change disease, which improved after depletion of TNF-α, soluble IL-4Rα, or IL-6. The Zhx2 hypomorph state increased cell membrane to nuclear migration of podocyte ZHX proteins in vivo (both cocktails) and lowered phosphorylated STAT6 activation (COVID-19 cocktail) in vitro. At higher doses, COVID-19 cocktails induced acute heart injury, myocarditis, pericarditis, acute liver injury, acute kidney injury, and high mortality in Zhx2+/+ mice, whereas Zhx2 hypomorph mice were relatively protected, due in part to early, asynchronous activation of STAT5 and STAT6 pathways in these organs. Dual depletion of cytokine combinations of TNF-α with IL-2, IL-13, or IL-4 in Zhx2+/+ mice reduced multiorgan injury and eliminated mortality. Using genome sequencing and CRISPR/Cas9, an insertion upstream of ZHX2 was identified as a cause of the human ZHX2 hypomorph state.


Assuntos
COVID-19 , Resfriado Comum , Humanos , Camundongos , Animais , Proteínas de Homeodomínio/genética , Albuminúria , Fator de Necrose Tumoral alfa , Síndrome da Liberação de Citocina , SARS-CoV-2/metabolismo , Fatores de Transcrição/genética
2.
Kidney Int ; 97(4): 753-764, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32059999

RESUMO

Zinc fingers and homeoboxes (ZHX) proteins are heterodimeric transcriptional factors largely expressed at the cell membrane in podocytes in vivo. We found ZHX2-based heterodimers in podocytes, with ZHX2-ZHX1 predominantly at the cell membrane of the podocyte cell body, and ZHX2-ZHX3 at the slit diaphragm. In addition to changes in overall ZHX2 expression, there was increased podocyte nuclear ZHX3 and ZHX2 in patients with focal segmental glomerulosclerosis, and increased podocyte nuclear ZHX1 in patients with minimal change disease. Zhx2 deficient mice had increased podocyte ZHX1 and ZHX3 expression. Zhx2 deficient mice and podocyte specific Zhx2 overexpressing transgenic rats develop worse experimental focal segmental glomerulosclerosis than controls, with increased nuclear ZHX3 and ZHX2, respectively. By contrast, podocyte specific Zhx2 overexpressing transgenic rats develop lesser proteinuria during experimental minimal change disease due to peripheral sequestration of ZHX1 by ZHX2. Using co-immunoprecipitation, the interaction of ZHX2 with aminopeptidase A in the podocyte body cell membrane, and EPHRIN B1 in the slit diaphragm were noted to be central to upstream events in animal models of minimal change disease and focal segmental glomerulosclerosis, respectively. Mice deficient in Enpep, the gene for aminopeptidase A, and Efnb1, the gene for ephrin B1 developed worse albuminuria in glomerular disease models. Targeting aminopeptidase A in Zhx2 deficient mice with monoclonal antibodies induced albuminuria and upregulation of the minimal change disease mediator angiopoietin-like 4 through nuclear entry of ZHX1. Thus, podocyte ZHX2 imbalance is a critical factor in human glomerular disease, with minimal change disease disparities mediated mostly through ZHX1, and focal segmental glomerulosclerosis deviations through ZHX3 and ZHX2.


Assuntos
Glomerulosclerose Segmentar e Focal , Proteínas de Homeodomínio , Podócitos , Fatores de Transcrição , Animais , Genes Homeobox , Glomerulosclerose Segmentar e Focal/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Podócitos/metabolismo , Fatores de Transcrição/genética , Dedos de Zinco
3.
Am J Physiol Renal Physiol ; 311(1): F63-5, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27147672

RESUMO

Improved understanding of glomerular disease mechanisms over the past decade has led to the emergence of new and targeted therapeutic strategies for chronic kidney disease (CKD). Most promising among these are the administration of recombinant mutated human angiopoietin-like 4, sialic acid-related sugars that induce sialylation in vivo, compounds related to Bis-T-23, and immune depletion of the soluble urokinase receptor from the circulation. Taking these therapeutic strategies into clinical trials will be the first step away from repurposed and relatively toxic drugs currently used for treating kidney disease.


Assuntos
Glomérulos Renais/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/uso terapêutico , Animais , Humanos , Proteinúria/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...