Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 14(9): 6685-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25924317

RESUMO

Luminescent materials containing europium ions are investigated for different optical applications. They can be obtained using bio-macromolecules, which are promising alternatives to synthetic polymers based on the decreasing oil resources. This paper describes studies of the DNA- and Agar-europium triflate luminescent membranes and its potential technological applications are expanded to electroluminescent devices. Polarized optical microscopy demonstrated that the samples are birefringent with submicrometer anisotropy. The X-ray diffraction analysis revealed predominantly amorphous nature of the samples and the atomic force microscopy images showed a roughness of the membranes of 409.0 and 136.1 nm for the samples of DNA10Eu and Agar1.11Eu, respectively. The electron paramagnetic resonance spectra of the DNA(n)Eu membranes with the principal lines at g ≈ 2.0 and g ≈ 4.8 confirmed uniform distribution of rare earth ions in a disordered matrix. Moreover, these strong and narrow resonance lines for the samples of DNA(n)Eu when compared to the Agar(n)Eu suggested a presence of paramagnetic radicals arising from the DNA matrix. The emission spectra suggested that the Eu3+ ions occupy a single local environment in both matrices and the excitation spectra monitored around the Eu emission lines pointed out that the Eu3+ ions in the Agar host were mainly excited via the broad band component rather than by direct intra-4f(6) excitation, whereas the opposite case occurred for the DNA-based sample.


Assuntos
Ágar/química , DNA/química , Európio/química , Substâncias Luminescentes/química , Membranas Artificiais , Medições Luminescentes/instrumentação
2.
J Magn Reson ; 222: 26-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22820006

RESUMO

In this work we report results of continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy of vanadium oxide nanotubes. The observed EPR spectra are composed of a weak well-resolved spectrum of isolated V(4+) ions on top of an intense and broad structure-less line shape, attributed to spin-spin exchanged V(4+) clusters. With the purpose to deconvolute the structured weak spectrum from the composed broad line, a new approach based on the Krylov basis diagonalization method (KBDM) is introduced. It is based on the discrimination between broad and sharp components with respect to a selectable threshold and can be executed with few adjustable parameters, without the need of a priori information on the shape and structure of the lines. This makes the method advantageous with respect to other procedures and suitable for fast and routine spectral analysis, which, in conjunction with simulation techniques based on the spin Hamiltonian parameters, can provide a full characterization of the EPR spectrum. Results demonstrate and characterize the coexistence of two V(4+) species in the nanotubes and show good progress toward the goal of obtaining high fidelity deconvoluted spectra from complex signals with overlapping broader line shapes.

3.
J Chem Phys ; 120(20): 9638-47, 2004 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-15267977

RESUMO

Glass structure and fluorine motion dynamics are investigated in lead-cadmium fluorgermanate glasses by means of differential scanning calorimetry, Raman scattering, x-ray absorption (EXAFS), electrical conductivity (EC), and (19)F nuclear magnetic resonance (NMR) techniques. Glasses with composition 60PbGeO(3)-xPbF(2)-yCdF(2) (in mol %), with x+y=40 and x=10, 20, 30, 40, are studied. Addition of metal fluorides to the base PbGeO(3) glass leads to a decrease of the glass transition temperature (T(g)) and to an enhancement of the ionic conductivity properties. Raman and EXAFS data analysis suggest that metagermanate chains form the basic structural feature of these glasses. The NMR study leads to the conclusion that the F-F distances are similar to those found in pure crystalline phases. Experimental results suggest the existence of a heterogeneous glass structure at the molecular scale, which can be described by fluorine rich regions permeating the metagermanate chains. The temperature dependence of the NMR line shapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluorine mobility in these systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...