Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 183: 114341, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197432

RESUMO

Platelets are the smallest blood cells, and their activation (platelet cohesion or aggregation) at sites of vascular injury is essential for thrombus formation. Since the use of antiplatelet therapy is an unsolved problem, there are now focused and innovative efforts to develop novel antiplatelet compounds. In this context, we assessed the antiplatelet effect of an acylhydroquinone series, synthesized by Fries rearrangement under microwave irradiation, evaluating the effect of diverse acyl chain lengths, their chlorinated derivatives, and their dimethylated derivatives both in the aromatic ring and also the effect of the introduction of a bromine atom at the terminus of the acyl chain. Findings from a primary screening of cytotoxic activity on platelets by lactate dehydrogenase assay identified 19 non-toxic compounds from the 27 acylhydroquinones evaluated. A large number of them showed IC50 values less than 10 µM acting against specific pathways of platelet aggregation. The highest activity was obtained with compound 38, it exhibited sub-micromolar IC50 of 0.98 ± 0.40, 1.10 ± 0.26, 3.98 ± 0.46, 6.79 ± 3.02 and 42.01 ± 3.48 µM against convulxin-, collagen-, TRAP-6-, PMA- and arachidonic acid-induced platelet aggregation, respectively. It also inhibited P-selectin and granulophysin expression. We demonstrated that the antiplatelet mechanism of compound 38 was through a decrease in a central target in human platelet activation as in mitochondrial function, and this could modulate a lower response of platelets to activating agonists. The results of this study show that the chemical space around ortho-carbonyl hydroquinone moiety is a rich source of biologically active compounds, signaling that the acylhydroquinone scaffold has a promising role in antiplatelet drug research.


Assuntos
Plaquetas/efeitos dos fármacos , Hidroquinonas/química , Hidroquinonas/farmacologia , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Plaquetas/fisiologia , Humanos , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Relação Estrutura-Atividade
2.
Bioorg Chem ; 100: 103935, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454391

RESUMO

Since cancer cells have different mitochondrial bioenergetic requirements than non-cancerous cells, therapeutic inhibition of its mitochondrial functionality continues to be an important target for anticancer drug discovery. In this study, a series of acylhydroquinones with different acyl-chain length, and their chlorinated derivatives, in the aromatic ring, synthesized by Fries rearrangement under microwave irradiation, were evaluated for their anticancer activity in two leukemia cell lines. Findings from the primary and secondary screening of the 18 acylhydroquinones, tested at 5 µM on acute promyelocytic leukemia HL-60 and acute lymphoblastic leukemia CEM cells lines, identified an acylchlorohydroquinone (12) with a highly selective anti-proliferative effect toward HL-60 cells. This compound induced S-phase arrest in the cell cycle progression of HL-60 cells with insignificant toxicity on leukemic CEM cells and non-cancerous Hs27 cells. In HL-60 leukemic cells, 12 triggered increased mitochondrial NADH oxidation, increased respiration in presence of oligomycin (state 4o), mitochondrial depolarization, and ROS production, suggesting an uncoupling of OXPHOS. This provoked a metabolic adaptation dependent on AMPK/ACC/autophagy axis, having the mitochondrial ß-oxidation a pro-survival role since the combination of 12 and etomoxir, a carnitine palmitoyl-transferase (CPT) inhibitor promoted extensive HL-60 cell death. Finally, 12-induced metabolic stress sensitized to HL-60 cells to cell death by the FDA-approved anti-leukemic drug ABT-199, a BH3 mimetic. Therefore, our results suggest that acylchlorohydroquinone is a promising scaffold in anti-promyelocytic leukemia drug research.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Hidroquinonas/química , Fosforilação Oxidativa/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Hidroquinonas/farmacologia , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA