Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
PLoS One ; 12(4): e0176649, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453540

RESUMO

Although essential in critical care medicine, mechanical ventilation often results in ventilator-induced lung injury. Low concentrations of hydrogen sulfide have been proven to have anti-inflammatory and anti-oxidative effects in the lung. The aim of this study was to analyze the kinetic effects of pre- and posttreatment with hydrogen sulfide in order to prevent lung injury as well as inflammatory and oxidative stress upon mechanical ventilation. Mice were either non-ventilated or mechanically ventilated with a tidal volume of 12 ml/kg for 6 h. Pretreated mice inhaled hydrogen sulfide in low dose for 1, 3, or 5 h prior to mechanical ventilation. Posttreated mice were ventilated with air followed by ventilation with hydrogen sulfide in various combinations. In addition, mice were ventilated with air for 10 h, or with air for 5 h and subsequently with hydrogen sulfide for 5 h. Histology, interleukin-1ß, neutrophil counts, and reactive oxygen species formation were examined in the lungs. Both pre-and posttreatment with hydrogen sulfide time-dependently reduced or even prevented edema formation, gross histological damage, neutrophil influx and reactive oxygen species production in the lung. These results were also observed in posttreatment, when the experimental time was extended and hydrogen sulfide administration started as late as after 5 h air ventilation. In conclusion, hydrogen sulfide exerts lung protection even when its application is limited to a short or delayed period. The observed lung protection is mediated by inhibition of inflammatory and oxidative signaling.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Sulfeto de Hidrogênio/farmacologia , Pneumonia/complicações , Pneumonia/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
4.
Oxid Med Cell Longev ; 2017: 3715037, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250891

RESUMO

The development of ventilator-induced lung injury (VILI) is still a major problem in mechanically ventilated patients. Low dose inhalation of hydrogen sulfide (H2S) during mechanical ventilation has been proven to prevent lung damage by limiting inflammatory responses in rodent models. However, the capacity of H2S to affect oxidative processes in VILI and its underlying molecular signaling pathways remains elusive. In the present study we show that ventilation with moderate tidal volumes of 12 ml/kg for 6 h led to an excessive formation of reactive oxygen species (ROS) in mice lungs which was prevented by supplemental inhalation of 80 parts per million of H2S. In addition, phosphorylation of the signaling protein Akt was induced by H2S. In contrast, inhibition of Akt by LY294002 during ventilation reestablished lung damage, neutrophil influx, and proinflammatory cytokine release despite the presence of H2S. Moreover, the ability of H2S to induce the antioxidant glutathione and to prevent ROS production was reversed in the presence of the Akt inhibitor. Here, we provide the first evidence that H2S-mediated Akt activation is a key step in protection against VILI, suggesting that Akt signaling limits not only inflammatory but also detrimental oxidative processes that promote the development of lung injury.


Assuntos
Citoproteção , Sulfeto de Hidrogênio/farmacologia , Pulmão/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Citoproteção/efeitos dos fármacos , Modelos Animais de Doenças , Sulfeto de Hidrogênio/uso terapêutico , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...