Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5657, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827083

RESUMO

MicroRNA (miRNA) biogenesis initiates co-transcriptionally, but how the Microprocessor machinery pinpoints the locations of short precursor miRNA sequences within long flanking regions of the transcript is not known. Here we show that miRNA biogenesis depends on DNA methylation. When the regions flanking the miRNA coding sequence are highly methylated, the miRNAs are more highly expressed, have greater sequence conservation, and are more likely to drive cancer-related phenotypes than miRNAs encoded by unmethylated loci. We show that the removal of DNA methylation from miRNA loci leads to their downregulation. Further, we found that MeCP2 binding to methylated miRNA loci halts RNA polymerase II elongation, leading to enhanced processing of the primary miRNA by Drosha. Taken together, our data reveal that DNA methylation directly affects miRNA biogenesis.


Assuntos
MicroRNAs/genética , Animais , Linhagem Celular , Metilação de DNA , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , MicroRNAs/metabolismo , Fases de Leitura Aberta , Processamento Pós-Transcricional do RNA
2.
PLoS One ; 14(3): e0211602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30889183

RESUMO

Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from a point mutation at the 5' splice site of intron 20 in the IKBKAP gene. This mutation decreases production of the IKAP protein, and treatments that increase the level of the full-length IKBKAP transcript are likely to be of therapeutic value. We previously found that phosphatidylserine (PS), an FDA-approved food supplement, elevates IKAP levels in cells generated from FD patients. Here we demonstrate that combined treatment of cells generated from FD patients with PS and kinetin or PS and the histone deacetylase inhibitor trichostatin A (TSA) resulted in an additive elevation of IKAP compared to each drug alone. This indicates that the compounds influence different pathways. We also found that pridopidine enhances production of IKAP in cells generated from FD patients. Pridopidine has an additive effect on IKAP levels when used in combination with kinetin or TSA, but not with PS; suggesting that PS and pridopidine influence IKBKAP levels through the same mechanism. Indeed, we demonstrate that the effect of PS and pridopidine is through sigma-1 receptor-mediated activation of the BDNF signaling pathway. A combination treatment with any of these drugs with different mechanisms has potential to benefit FD patients.


Assuntos
Proteínas de Transporte/metabolismo , Disautonomia Familiar/tratamento farmacológico , Disautonomia Familiar/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Disautonomia Familiar/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Cinetina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilserinas/farmacologia , Piperidinas/farmacologia , Fatores de Elongação da Transcrição , Resultado do Tratamento , Tubulina (Proteína)/metabolismo
3.
Mol Cell ; 73(1): 5-6, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609391

RESUMO

Parkinson's disease (PD) is characterized by protein aggregates of α-synuclein in neurons. In a recent issue of Science, Kam et al. (2018) revealed a feedforward loop in which α-synuclein increases the levels of poly(adenosine 5'-diphosphate-ribose) (PAR) that in turn causes α-synuclein aggregates to be more toxic. This study advances our understanding of PD pathology.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Morte Celular , Humanos , Neurônios , Polímeros
4.
Oncotarget ; 9(17): 13530-13544, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568375

RESUMO

Adenocarcinomas are cancers originating from the gland forming cells of the colon and rectal lining, and are known to be the most common type of colorectal cancers. The current diagnosis strategies for colorectal cancers include biopsy, laboratory tests, and colonoscopy which are time consuming. Identification of protein biomarkers could aid in the detection of colon adenocarcinomas (CACs). In this study, tissue proteome of colon adenocarcinomas (n = 11) was compared with the matched control specimens (n = 11) using isobaric tags for relative and absolute quantitation (iTRAQ) based liquid chromatography-mass spectrometry (LC-MS/MS) approach. A list of 285 significantly altered proteins was identified in colon adenocarcinomas as compared to its matched controls, which are associated with growth and malignancy of the tumors. Protein interaction analysis revealed the association of altered proteins in colon adenocarcinomas with various transcription factors and their targets. A panel of nine proteins was validated using multiple reaction monitoring (MRM). Additionally, S100A9 was also validated using immunoblotting. The identified panel of proteins may serve as potential biomarkers and thereby aid in the detection of colon adenocarcinomas.

5.
PLoS Genet ; 12(12): e1006486, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27997532

RESUMO

Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.


Assuntos
Transporte Axonal/efeitos dos fármacos , Disautonomia Familiar/genética , Histona Desacetilases/genética , Fosfatidilserinas/administração & dosagem , Tubulina (Proteína)/genética , Processamento Alternativo/genética , Animais , Transporte Axonal/genética , Axônios/efeitos dos fármacos , Modelos Animais de Doenças , Disautonomia Familiar/tratamento farmacológico , Disautonomia Familiar/patologia , Éxons/genética , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/patologia , Desacetilase 6 de Histona , Histona Desacetilases/biossíntese , Humanos , Camundongos , Camundongos Knockout , Degeneração Neural/tratamento farmacológico , Degeneração Neural/genética , Degeneração Neural/patologia , Fator de Crescimento Neural/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fosfatidilserinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
6.
Genome Res ; 26(4): 541-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26860615

RESUMO

Splicing aberrations are prominent drivers of cancer, yet the regulatory pathways controlling them are mostly unknown. Here we develop a method that integrates physical interaction, gene expression, and alternative splicing data to construct the largest map of transcriptomic and proteomic interactions leading to cancerous splicing aberrations defined to date, and identify driver pathways therein. We apply our method to colon adenocarcinoma and non-small-cell lung carcinoma. By focusing on colon cancer, we reveal a novel tumor-favoring regulatory pathway involving the induction of the transcription factor MYC by the transcription factor ELK1, as well as the subsequent induction of the alternative splicing factor PTBP1 by both. We show that PTBP1 promotes specific RAC1,NUMB, and PKM splicing isoforms that are major triggers of colon tumorigenesis. By testing the pathway's activity in patient tumor samples, we find ELK1,MYC, and PTBP1 to be overexpressed in conjunction with oncogenic KRAS mutations, and show that these mutations increase ELK1 levels via the RAS-MAPK pathway. We thus illuminate, for the first time, a full regulatory pathway connecting prevalent cancerous mutations to functional tumor-inducing splicing aberrations. Our results demonstrate our method is applicable to different cancers to reveal regulatory pathways promoting splicing aberrations.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Splicing de RNA , Transdução de Sinais , Proteínas Elk-1 do Domínio ets/metabolismo , Análise por Conglomerados , Biologia Computacional , Perfilação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
7.
Hum Mol Genet ; 25(7): 1307-17, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26769675

RESUMO

Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD.


Assuntos
Proteínas de Transporte/genética , Disautonomia Familiar/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilserinas/farmacologia , Ativação Transcricional , Proteínas de Transporte/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Disautonomia Familiar/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Feminino , Humanos , Fosfatidilserinas/uso terapêutico , Fatores de Elongação da Transcrição , Proteínas Elk-1 do Domínio ets
8.
Hum Mol Genet ; 22(14): 2785-94, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23515154

RESUMO

Familial dysautonomia (FD) is a severe neurodegenerative genetic disorder restricted to the Ashkenazi Jewish population. The most common mutation in FD patients is a T-to-C transition at position 6 of intron 20 of the IKBKAP gene. This mutation causes aberrant skipping of exon 20 in a tissue-specific manner, leading to reduction of the IκB kinase complex-associated protein (IKAP) protein in the nervous system. We established a homozygous humanized mouse strain carrying human exon 20 and its two flanking introns; the 3' intron has the transition observed in the IKBKAP gene of FD patients. Although our FD humanized mouse does not display FD symptoms, the unique, tissue-specific splicing pattern of the IKBKAP in these mice allowed us to evaluate the effect of therapies on gene expression and exon 20 splicing. The FD mice were supplemented with phosphatidylserine (PS), a safe food supplement that increases mRNA and protein levels of IKBKAP in cell lines generated from FD patients. Here we demonstrated that PS treatment increases IKBAKP mRNA and IKAP protein levels in various tissues of FD mice without affecting exon 20 inclusion levels. We also observed that genes associated with transcription regulation and developmental processes were up-regulated in the cerebrum of PS-treated mice. Thus, PS holds promise for the treatment of FD.


Assuntos
Proteínas de Transporte/genética , Disautonomia Familiar/metabolismo , Fosfatidilserinas/metabolismo , Processamento Alternativo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Disautonomia Familiar/genética , Éxons , Feminino , Técnicas de Introdução de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Íntrons , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Elongação da Transcrição
9.
Cell Rep ; 1(5): 543-56, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22832277

RESUMO

During evolution segments of homeothermic genomes underwent a GC content increase. Our analyses reveal that two exon-intron architectures have evolved from an ancestral state of low GC content exons flanked by short introns with a lower GC content. One group underwent a GC content elevation that abolished the differential exon-intron GC content, with introns remaining short. The other group retained the overall low GC content as well as the differential exon-intron GC content, and is associated with longer introns. We show that differential exon-intron GC content regulates exon inclusion level in this group, in which disease-associated mutations often lead to exon skipping. This group's exons also display higher nucleosome occupancy compared to flanking introns and exons of the other group, thus "marking" them for spliceosomal recognition. Collectively, our results reveal that differential exon-intron GC content is a previously unidentified determinant of exon selection and argue that the two GC content architectures reflect the two mechanisms by which splicing signals are recognized: exon definition and intron definition.


Assuntos
Composição de Bases/genética , Éxons/genética , Íntrons/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , DNA/genética , DNA Recombinante/genética , Evolução Molecular , Humanos , Modelos Genéticos , Mutação/genética , Spliceossomos/genética
10.
PLoS One ; 5(12): e15884, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21209961

RESUMO

Familial Dysautonomia (FD) is an autosomal recessive congenital neuropathy that results from abnormal development and progressive degeneration of the sensory and autonomic nervous system. The mutation observed in almost all FD patients is a point mutation at position 6 of intron 20 of the IKBKAP gene; this gene encodes the IκB kinase complex-associated protein (IKAP). The mutation results in a tissue-specific splicing defect: Exon 20 is skipped, leading to reduced IKAP protein expression. Here we show that phosphatidylserine (PS), an FDA-approved food supplement, increased IKAP mRNA levels in cells derived from FD patients. Long-term treatment with PS led to a significant increase in IKAP protein levels in these cells. A conjugate of PS and an omega-3 fatty acid also increased IKAP mRNA levels. Furthermore, PS treatment released FD cells from cell cycle arrest and up-regulated a significant number of genes involved in cell cycle regulation. Our results suggest that PS has potential for use as a therapeutic agent for FD. Understanding its mechanism of action may reveal the mechanism underlying the FD disease.


Assuntos
Proteínas de Transporte/metabolismo , Disautonomia Familiar/genética , Disautonomia Familiar/metabolismo , Regulação da Expressão Gênica , Fosfatidilserinas/farmacologia , Ciclo Celular , Linhagem Celular , Análise por Conglomerados , Códon , Ácidos Graxos Ômega-3/metabolismo , Heterozigoto , Humanos , Quinase I-kappa B/metabolismo , Íntrons , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Fatores de Elongação da Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...