Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2404309121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990948

RESUMO

Antibody-producing plasma cells fuel humoral immune responses. They also contribute to autoimmune diseases such as systemic lupus erythematosus or IgA nephropathy. Interleukin-6 and the tumor necrosis factor (TNF) family ligands BAFF (B cell-activating factor) and APRIL (a proliferation-inducing ligand) participate in plasma cell survival. BAFF binds to three receptors, BAFFR (BAFF receptor), TACI (transmembrane activator and CAML interactor), and BCMA (B cell maturation antigen), while APRIL binds to TACI, BCMA, and proteoglycans. However, which ligand-receptor pair(s) are required to maintain plasma cells in different body locations remains unknown. Here, by combining mouse genetic and pharmacological approaches, we found that plasma cells required BCMA and/or TACI but not BAFFR. BCMA responded exclusively to APRIL, while TACI responded to both BAFF and APRIL, identifying three self-sufficient ligand-receptor pairs for plasma cell maintenance: BAFF-TACI, APRIL-TACI, and APRIL-BCMA. Together, these actors accounted for 90% of circulating antibodies. In BAFF-ko mice, the reduction of plasma cells upon APRIL inhibition indicated that APRIL could function in the absence of BAFF-APRIL heteromers. No evidence was found that in the absence of BCMA and TACI, binding of APRIL to proteoglycans would help maintain plasma cells. IL-6, alone or together with BAFF and APRIL, supported mainly splenic plasmablasts and plasma cells and contributed to circulating IgG but not IgA levels. In conclusion, survival factors for plasma cells can vary with body location and with the antibody isotype that plasma cells produce. To efficiently target plasma cells, in particular IgA-producing ones, dual inhibition of BAFF and APRIL is required.


Assuntos
Fator Ativador de Células B , Receptor do Fator Ativador de Células B , Antígeno de Maturação de Linfócitos B , Interleucina-6 , Proteína Transmembrana Ativadora e Interagente do CAML , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia , Interleucina-6/metabolismo , Interleucina-6/imunologia , Camundongos , Receptor do Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/imunologia , Receptor do Fator Ativador de Células B/genética , Plasmócitos/imunologia , Plasmócitos/metabolismo , Camundongos Knockout , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Camundongos Endogâmicos C57BL
2.
Front Immunol ; 13: 1035556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532058

RESUMO

BAFF (B cell activation factor of the TNF family/B lymphocyte stimulator, BLyS) and APRIL (a proliferation-inducing ligand) are targeted by atacicept, a decoy receptor consisting of the extracellular domain of TACI (transmembrane activator and calcium-modulator and cyclophilin (CAML) interactor) fused to the Fc portion of human IgG1. The purpose of the study was to characterize free and ligand-bound atacicept in humans. Total and active atacicept in serum of healthy volunteers receiving a single dose of subcutaneous atacicept or in patients treated weekly for one year were measured by ELISA, Western blot, or cell-based assays. Pharmacokinetics of free and bound atacicept were predicted based on total atacicept ELISA results. Persistence of complexes of purified atacicept bound to recombinant ligands was also monitored in mice. Results show that unbound or active atacicept in human serum exceeded 0.1 µg/ml for one week post administration, or throughout a 1-year treatment with weekly administrations. After a single administration of atacicept, endogenous BAFF bound to atacicept was detected after 8 h then increased about 100-fold within 2 to 4 weeks. Endogenous heteromers of BAFF and APRIL bound to atacicept also accumulated, but atacicept-APRIL complexes were not detected. In mice receiving intravenous injections of purified complexes pre-formed in vitro, atacicept-BAFF persisted longer (more than a week) than atacicept-APRIL (less than a day). Thus, only biologically inactive BAFF and BAFF-APRIL heteromers accumulate on atacicept in vivo. The measure of active atacicept provides further support for the once-weekly dosing regimen implemented in the clinical development of atacicept.


Assuntos
Imunoglobulina G , Ativação Linfocitária , Humanos , Camundongos , Animais , Ligantes , Proteínas Recombinantes de Fusão/farmacologia
3.
Nature ; 597(7874): 92-96, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433968

RESUMO

Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Proteoglicanas de Heparan Sulfato/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/deficiência
4.
Front Cell Dev Biol ; 8: 577662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240880

RESUMO

B cell activation factor of the TNF family (BAFF/BLyS), an essential B cell survival factor of which circulating levels are elevated in several autoimmune disorders, is targeted in the clinic for the treatment of systemic lupus erythematosus (SLE). The soluble form of BAFF can exist as 3-mer, or as 60-mer that results from the ordered assembly of twenty 3-mers and that can be obtained from naturally cleaved membrane-bound BAFF or made as a recombinant protein. However, which forms of soluble BAFF exist and act in humans is unclear. In this study, BAFF 3-mer and 60-mer in biological fluids were characterized for size, activity and response to specific stimulators or inhibitors of BAFF. Human cerebrospinal fluids (CSF) from patients with multiple sclerosis and adult human sera contained exclusively BAFF 3-mer in these assays, also when BAFF concentrations were moderately SLE or highly (BAFFR-deficient individual) increased. Human sera, but not CSF, contained a high molecular weight, saturable activity that dissociated preformed recombinant BAFF 60-mer into 3-mer. This activity was lower in cord blood. Cord blood displayed BAFF levels 10-fold higher than in adults and consistently contained a fair proportion of active high molecular weight BAFF able to dissociate into 3-mer but not endowed with all properties of recombinant BAFF 60-mer. If BAFF 60-mer is produced in humans, it is dissociated, or at least attenuated in the circulation.

5.
Elife ; 62017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28355132

RESUMO

Despite many angiogenic factors playing crucial roles in metabolic homeostasis, effects of angiopoietin-2 (ANG-2) in adipose tissue (AT) remain unclear. Utilizing a doxycycline-inducible AT-specific ANG-2 overexpression mouse model, we assessed the effects of ANG-2 in AT expansion upon a high-fat diet (HFD) challenge. ANG-2 is significantly induced, with subcutaneous white AT (sWAT) displaying the highest ANG-2 expression. ANG-2 overexpressing mice show increased sWAT vascularization and are resistant to HFD-induced obesity. In addition, improved glucose and lipid metabolism are observed. Mechanistically, the sWAT displays a healthier expansion pattern with increased anti-inflammatory macrophage infiltration. Conversely, ANG-2 neutralization in HFD-challenged wild-type mice shows reduced vascularization in sWAT, associated with impaired glucose tolerance and lipid clearance. Blocking ANG-2 causes significant pro-inflammatory and pro-fibrotic changes, hallmarks of an unhealthy AT expansion. In contrast to other pro-angiogenic factors, such as vascular endothelial growth factor-A (VEGF-A), this is achieved without any enhanced beiging of white AT.


Assuntos
Tecido Adiposo Branco/fisiologia , Angiopoietina-2/metabolismo , Neovascularização Fisiológica , Animais , Dieta Hiperlipídica , Glucose/metabolismo , Metabolismo dos Lipídeos , Camundongos
6.
J Biol Chem ; 291(38): 19826-34, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27451394

RESUMO

B cell activating factor of the TNF family (BAFF), also known as B lymphocyte stimulator, is a ligand required for the generation and maintenance of B lymphocytes. In this study, the ability of different monoclonal antibodies to recognize, inhibit, or activate mouse BAFF was investigated. One of them, a mouse IgG1 named Sandy-2, prevented the binding of BAFF to all of its receptors, BAFF receptor, transmembrane activator and calcium modulating ligand interactor, and B cell maturation antigen, at a stoichiometric ratio; blocked the activity of mouse BAFF on a variety of cell-based reporter assays; and antagonized the prosurvival action of BAFF on primary mouse B cells in vitro A single administration of Sandy-2 in mice induced B cell depletion within 2 weeks, down to levels close to those observed in BAFF-deficient mice. This depletion could then be maintained with a chronic treatment. Sandy-2 and a previously described rat IgG1 antibody, 5A8, also formed a pair suitable for the sensitive detection of endogenous circulating BAFF by ELISA or using a homogenous assay. Interestingly, 5A8 and Sandy-5 displayed activities opposite to that of Sandy-2 by stimulating recombinant BAFF in vitro and endogenous BAFF in vivo These tools will prove useful for the detection and functional manipulation of endogenous mouse BAFF and provide an alternative to the widely used BAFF receptor-Fc decoy receptor for the specific depletion of BAFF in mice.


Assuntos
Anticorpos/farmacologia , Fator Ativador de Células B/antagonistas & inibidores , Linfócitos B/imunologia , Imunoglobulina G/farmacologia , Animais , Anticorpos/imunologia , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Linfócitos B/patologia , Sobrevivência Celular/efeitos dos fármacos , Hiperplasia , Imunoglobulina G/imunologia , Depleção Linfocítica/métodos , Camundongos , Camundongos Knockout
7.
EMBO Mol Med ; 8(2): 96-104, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26882243

RESUMO

DCC (Deleted in Colorectal Carcinoma) has been demonstrated to constrain tumor progression by inducing apoptosis unless engaged by its ligand netrin-1. This has been shown in breast and colorectal cancers; however, this tumor suppressive function in other cancers is not established. Using a transgenic mouse model, we report here that inhibition of DCC-induced apoptosis is associated with lymphomagenesis. In human diffuse large B-cell lymphoma (DLBCL), an imbalance of the netrin-1/DCC ratio suggests a loss of DCC-induced apoptosis, either via a decrease in DCC expression in germinal center subtype or by up-regulation of netrin-1 in activated B-cell (ABC) one. Such imbalance is also observed in mantle cell lymphoma (MCL). Using a netrin-1 interfering antibody, we demonstrate both in vitro and in vivo that netrin-1 acts as a survival factor for ABC-DLBCL and MCL tumor cells. Together, these data suggest that interference with the netrin-1/DCC interaction could represent a promising therapeutic strategy in netrin-1-positive DLBCL and MCL.


Assuntos
Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/terapia , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/terapia , Fatores de Crescimento Neural/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Animais , Anticorpos/administração & dosagem , Anticorpos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Receptor DCC , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Camundongos Transgênicos , Netrina-1 , Ligação Proteica
8.
Diabetes ; 64(12): 4075-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26340931

RESUMO

There are many known adipokines differentially secreted from the different adipose depots; however, their paracrine and autocrine effects on de novo adipocyte formation are not fully understood. By developing a coculture method of preadipocytes with primary subcutaneous and visceral adipocytes or tissue explants, we could show that the total secretome inhibited preadipocyte differentiation. Using a proteomics approach with fractionated secretome samples, we were able to identify a spectrum of factors that either positively or negatively affected adipocyte formation. Among the secreted factors, Slc27a1, Vim, Cp, and Ecm1 promoted adipocyte differentiation, whereas Got2, Cpq, interleukin-1 receptor-like 1/ST2-IL-33, Sparc, and Lgals3bp decreased adipocyte differentiation. In human subcutaneous adipocytes of lean subjects, obese subjects, and obese subjects with type 2 diabetes, Vim and Slc27a1 expression was negatively correlated with adipocyte size and BMI and positively correlated with insulin sensitivity, while Sparc and Got2 showed the opposite trend. Furthermore, we demonstrate that Slc27a1 was increased upon weight loss in morbidly obese patients, while Sparc expression was reduced. Taken together, our findings identify adipokines that regulate adipocyte differentiation through positive or negative paracrine and autocrine feedback loop mechanisms, which could potentially affect whole-body energy metabolism.


Assuntos
Adipócitos/patologia , Adipogenia , Células-Tronco Adultas/patologia , Comunicação Celular , Regulação da Expressão Gênica no Desenvolvimento , Obesidade/patologia , Gordura Subcutânea/patologia , Células 3T3-L1 , Adipócitos/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Índice de Massa Corporal , Tamanho Celular , Células Cultivadas , Técnicas de Cocultura , Estudos de Coortes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Organismos Livres de Patógenos Específicos , Gordura Subcutânea/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Gordura Subcutânea Abdominal/patologia , Técnicas de Cultura de Tecidos
9.
J Biol Chem ; 289(7): 4273-85, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24391090

RESUMO

Development of ectodermal appendages, such as hair, teeth, sweat glands, sebaceous glands, and mammary glands, requires the action of the TNF family ligand ectodysplasin A (EDA). Mutations of the X-linked EDA gene cause reduction or absence of many ectodermal appendages and have been identified as a cause of ectodermal dysplasia in humans, mice, dogs, and cattle. We have generated blocking antibodies, raised in Eda-deficient mice, against the conserved, receptor-binding domain of EDA. These antibodies recognize epitopes overlapping the receptor-binding site and prevent EDA from binding and activating EDAR at close to stoichiometric ratios in in vitro binding and activity assays. The antibodies block EDA1 and EDA2 of both mammalian and avian origin and, in vivo, suppress the ability of recombinant Fc-EDA1 to rescue ectodermal dysplasia in Eda-deficient Tabby mice. Moreover, administration of EDA blocking antibodies to pregnant wild type mice induced in developing wild type fetuses a marked and permanent ectodermal dysplasia. These function-blocking anti-EDA antibodies with wide cross-species reactivity will enable study of the developmental and postdevelopmental roles of EDA in a variety of organisms and open the route to therapeutic intervention in conditions in which EDA may be implicated.


Assuntos
Anticorpos Monoclonais Murinos/toxicidade , Anticorpos Neutralizantes/toxicidade , Autoanticorpos/toxicidade , Displasia Ectodérmica/induzido quimicamente , Displasia Ectodérmica/imunologia , Ectodisplasinas/antagonistas & inibidores , Animais , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Autoanticorpos/genética , Autoanticorpos/imunologia , Sequência de Bases , Bovinos , Linhagem Celular , Cães , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Displasia Ectodérmica/patologia , Ectodisplasinas/genética , Ectodisplasinas/imunologia , Ectodisplasinas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Gravidez
10.
Hepatology ; 59(2): 423-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23929719

RESUMO

UNLABELLED: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity, mitochondrial antiviral signaling protein (MAVS) and TRIF, a phosphatase involved in growth factor signaling, T-cell protein tyrosine phosphatase (TC-PTP), and the E3 ubiquitin ligase component UV-damaged DNA-binding protein 1 (DDB1). Here we explored quantitative proteomics to identify novel cellular substrates of the NS3-4A protease. Cell lines inducibly expressing the NS3-4A protease were analyzed by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. This approach identified the membrane-associated peroxidase GPx8 as a bona fide cellular substrate of the HCV NS3-4A protease. Cleavage by NS3-4A occurs at Cys 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic HCV. Overexpression and RNA silencing studies revealed that GPx8 is involved in viral particle production but not in HCV entry or RNA replication. CONCLUSION: We provide proof-of-concept for the use of quantitative proteomics to identify cellular substrates of a viral protease and describe GPx8 as a novel proviral host factor targeted by the HCV NS3-4A protease.


Assuntos
Hepatite C Crônica/metabolismo , Peptídeo Hidrolases/metabolismo , Peroxidases/metabolismo , Proteômica/métodos , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Biópsia , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/farmacologia , Peroxidases/química , Peroxidases/efeitos dos fármacos , Especificidade por Substrato , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia , Proteínas não Estruturais Virais/química , Vírion/efeitos dos fármacos
11.
PLoS One ; 8(4): e61350, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23620746

RESUMO

Myeloid cells express the TNF family ligands BAFF/BLyS and APRIL, which exert their effects on B cells at different stages of differentiation via the receptors BAFFR, TACI (Transmembrane Activator and CAML-Interactor) and/or BCMA (B Cell Maturation Antigen). BAFF and APRIL are proteins expressed at the cell membrane, with both extracellular and intracellular domains. Therefore, receptor/ligand engagement may also result in signals in ligand-expressing cells via so-called "reverse signalling". In order to understand how TACI-Fc (atacicept) technically may mediate immune stimulation instead of suppression, we investigated its potential to activate reverse signalling through BAFF and APRIL. BAFFR-Fc and TACI-Fc, but not Fn14-Fc, reproducibly stimulated the ERK and other signalling pathways in bone marrow-derived mouse macrophages. However, these effects were independent of BAFF or APRIL since the same activation profile was observed with BAFF- or APRIL-deficient cells. Instead, cell activation correlated with the presence of high molecular mass forms of BAFFR-Fc and TACI-Fc and was strongly impaired in macrophages deficient for Fc receptor gamma chain. Moreover, a TACI-Fc defective for Fc receptor binding elicited no detectable signal. Although these results do not formally rule out the existence of BAFF or APRIL reverse signalling (via pathways not tested in this study), they provide no evidence in support of reverse signalling and point to the importance of using appropriate specificity controls when working with Fc receptor-expressing myeloid cells.


Assuntos
Fator Ativador de Células B/metabolismo , Membrana Celular/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Transdução de Sinais , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Receptor do Fator Ativador de Células B/metabolismo , Cromatografia em Gel , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Receptores Fc/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Receptor de TWEAK
12.
Blood ; 118(7): 1838-44, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21642598

RESUMO

The bone marrow (BM) is an organ extremely efficient in mediating long-term survival of plasma cells (PCs), ensuring an immune humoral memory. This implies that the BM must provide continuously key PC survival factors. Our results show that the BM is an organ constitutively rich in a proliferation-inducing ligand (APRIL), a member of the tumor necrosis factor superfamily implicated in PC survival. APRIL production is induced during hematopoiesis in myeloid cells by non-lineage-committing factors such as stem cell factor, thrombopoietin, IL-3, and FMS-like tyrosine kinase 3 ligand. Notably, APRIL production, both in the human and mouse systems, peaks in myeloid precursor cells, before dropping in fully mature granulocytes. Myeloid cells secrete APRIL that circulates freely in BM plasma to act on PCs, usually at distance from APRIL production sites. Selective APRIL in vivo antagonism and in vitro coculture experiments further demonstrated that myeloid precursor cells mediates PC survival in an APRIL-dependent manner Thus, APRIL production by myeloid precursor cells shows that the 2 main BM functions, hematopoiesis and long-term PC survival, are linked. Such constitutive and high APRIL production may explain why BM mediates long-term PC survival.


Assuntos
Células da Medula Óssea/citologia , Leucopoese , Células Mieloides/citologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Células da Medula Óssea/metabolismo , Sobrevivência Celular , Células Cultivadas , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Plasmócitos/citologia , Plasmócitos/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
13.
Hepatology ; 51(4): 1127-36, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20044805

RESUMO

Hepatitis C virus (HCV) infection induces the endogenous interferon (IFN) system in the liver in some but not all patients with chronic hepatitis C (CHC). Patients with a pre-activated IFN system are less likely to respond to the current standard therapy with pegylated IFN-alpha. Mitochondrial antiviral signaling protein (MAVS) is an important adaptor molecule in a signal transduction pathway that senses viral infections and transcriptionally activates IFN-beta. The HCV NS3-4A protease can cleave and thereby inactivate MAVS in vitro, and, therefore, might be crucial in determining the activation status of the IFN system in the liver of infected patients. We analyzed liver biopsies from 129 patients with CHC to investigate whether MAVS is cleaved in vivo and whether cleavage prevents the induction of the endogenous IFN system. Cleavage of MAVS was detected in 62 of the 129 samples (48%) and was more extensive in patients with a high HCV viral load. MAVS was cleaved by all HCV genotypes (GTs), but more efficiently by GTs 2 and 3 than by GTs 1 and 4. The IFN-induced Janus kinase (Jak)-signal transducer and activator of transcription protein (STAT) pathway was less frequently activated in patients with cleaved MAVS, and there was a significant inverse correlation between cleavage of MAVS and the expression level of the IFN-stimulated genes IFI44L, Viperin, IFI27, USP18, and STAT1. We conclude that the pre-activation status of the endogenous IFN system in the liver of patients with CHC is in part regulated by cleavage of MAVS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepatite C Crônica/metabolismo , Interferons/metabolismo , Fígado/metabolismo , Linhagem Celular , Hepatite C Crônica/virologia , Humanos , Carga Viral
14.
J Clin Invest ; 118(8): 2887-95, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18618015

RESUMO

The bone marrow constitutes a favorable environment for long-lived antibody-secreting plasma cells, providing blood-circulating antibody. Plasma cells are also present in mucosa-associated lymphoid tissue (MALT) to mediate local frontline immunity, but how plasma cell survival there is regulated is not known. Here we report that a proliferation-inducing ligand (APRIL) promoted survival of human upper and lower MALT plasma cells by upregulating expression of the antiapoptotic proteins bcl-2, bcl-xL, and mcl-1. The in situ localization of APRIL was consistent with such a prosurvival role in MALT. In upper MALT, tonsillar epithelium produced APRIL. Upon infection, APRIL production increased considerably when APRIL-secreting neutrophils recruited from the blood infiltrated the crypt epithelium. Heparan sulfate proteoglycans (HSPGs) retained secreted APRIL in the subepithelium of the infected zone to create APRIL-rich niches, wherein IgG-producing plasma cells accumulated. In lower MALT, neutrophils were the unique source of APRIL, giving rise to similar niches for IgA-producing plasmocytes in villi of lamina propria. Furthermore, we found that mucosal humoral immunity in APRIL-deficient mice is less persistent than in WT mice. Hence, production of APRIL by inflammation-recruited neutrophils may create plasma cell niches in MALT to sustain a local antibody production.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Mucosa/imunologia , Neutrófilos/metabolismo , Plasmócitos/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Linhagem Celular , Humanos , Rim/citologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
15.
Cytokine ; 40(3): 216-25, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18023358

RESUMO

IL-33 (or IL-1F11) was recently identified as a ligand for the previously orphaned IL-1 family receptor T1/ST2. Previous studies have established that IL-33 and T1/ST2 exert key functions in Th2 responses. In this study, we demonstrate that IL-33 induces the production of pro-inflammatory mediators in mast cells. IL-33 dose and time-dependently stimulated IL-6 secretion by P815 mastocytoma cells and primary mouse bone marrow-derived mast cells (BMMC). This effect was dependent on T1/ST2 binding. In addition, IL-33 also induced IL-1beta, TNF-alpha, MCP-1, and PGD2 production in BMMC. By RNase protection assay, we demonstrated that IL-33 increased IL-6 and IL-1beta mRNA expression. These effects of IL-33 appeared to occur independently of mast cell degranulation, The results of this study show for the first time that IL-33, a novel member of the IL-1 family of cytokines, stimulates the production of pro-inflammatory mediators by mast cells in addition to its effect on T helper 2 responses. These findings open new perspectives for the treatment of inflammatory diseases by targeting IL-33.


Assuntos
Mediadores da Inflamação/imunologia , Interleucinas/farmacologia , Mastócitos/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Quimiocina CCL2/biossíntese , Quimiocina CCL2/imunologia , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-1beta/biossíntese , Interleucina-1beta/imunologia , Interleucina-33 , Interleucinas/imunologia , Mastócitos/citologia , Mastócitos/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Prostaglandina D2/biossíntese , Prostaglandina D2/imunologia , Ligação Proteica/imunologia , Receptores de Interleucina , Células Th2/citologia , Células Th2/imunologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
16.
Blood ; 109(1): 331-8, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17190854

RESUMO

A PRoliferation-Inducing TNF Ligand (APRIL) costimulates B-cell activation. When overexpressed in mice, APRIL induces B-cell neoplasia, reminiscent of human B-cell chronic lymphoid leukemia (B-CLL). We analyzed APRIL expression in situ in human non-Hodgkin lymphomas. APRIL up-regulation was only observed in high-grade B-cell lymphomas, diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma (BL). Up-regulation was seen in 46% and 20% of DLBCL and BL, respectively. In DLBCL, neutrophils, constitutively producing APRIL and infiltrating the tumor tissue, were the main cellular source of APRIL. Rare DLBCL cases showed a predominance of histiocytes or mesenchymal cells as APRIL source. APRIL secreted by neutrophils accumulated on tumor cells via proteoglycan binding. In addition to proteoglycans, DLBCL tumor cells expressed the APRIL signaling receptor, TACI and/or BCMA, indicating that these tumor cells are fully equipped to respond to APRIL. A retrospective clinical analysis revealed a significant correlation between high expression of APRIL in tumor lesions and decreased overall patient survival rate. Hence, APRIL produced by inflammatory cells infiltrating lymphoma lesions may increase tumor aggressiveness and affect disease outcome.


Assuntos
Linfoma de Burkitt/metabolismo , Linfoma de Células B/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma não Hodgkin/metabolismo , Proteínas de Neoplasias/fisiologia , Neutrófilos/metabolismo , Proteoglicanas/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/fisiologia , Antígeno de Maturação de Linfócitos B/metabolismo , Linfoma de Burkitt/mortalidade , Linfoma de Burkitt/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Linfoma de Células B/mortalidade , Linfoma de Células B/patologia , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/patologia , Linfoma não Hodgkin/mortalidade , Linfoma não Hodgkin/patologia , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Prognóstico , Estrutura Terciária de Proteína , Estudos Retrospectivos , Análise de Sobrevida , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/biossíntese , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Regulação para Cima
17.
Mol Cell Biol ; 26(20): 7397-408, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17015472

RESUMO

Apoptosis, induced by a number of death stimuli, is associated with a fragmentation of the mitochondrial network. These morphological changes in mitochondria have been shown to require proteins, such as Drp1 or hFis1, which are involved in regulating the fission of mitochondria. However, the precise role of mitochondrial fission during apoptosis remains elusive. Here we report that inhibiting the fission machinery in Bax/Bak-mediated apoptosis, by down-regulating of Drp1 or hFis1, prevents the fragmentation of the mitochondrial network and partially inhibits the release of cytochrome c from the mitochondria but fails to block the efflux of Smac/DIABLO. In addition, preventing mitochondrial fragmentation does not inhibit cell death induced by Bax/Bak-dependent death stimuli, in contrast to the effects of Bcl-xL or caspase inhibition. Therefore, the fission of mitochondria is a dispensable event in Bax/Bak-dependent apoptosis.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular , Chlorocebus aethiops , Citocromos c/metabolismo , Dinaminas , GTP Fosfo-Hidrolases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
18.
EMBO J ; 23(3): 564-71, 2004 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-14749731

RESUMO

Cell death and survival play a key role in the immune system as well as during development. The control mechanisms that balance cell survival against cell death are not well understood. Here we report a novel strategy used by a single protein to regulate chronologically cell survival and death. The interferon-induced protein kinase PKR acts as a molecular clock by using catalysis-dependent and -independent activities to temporally induce cell survival prior to cell death. We show that the proapoptotic protein PKR surprisingly activates a survival pathway, which is mediated by NF-kappaB to delay apoptosis. Cell death is then induced by PKR through the phosphorylation of eIF-2alpha. This unique temporal control might serve as a paradigm for other kinases whose catalytic activity is not required for all of their functions.


Assuntos
Apoptose/fisiologia , Transdução de Sinais/fisiologia , eIF-2 Quinase/metabolismo , Animais , Sobrevivência Celular/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Camundongos , NF-kappa B/metabolismo , Células NIH 3T3 , Fosforilação
19.
Biol Chem ; 383(9): 1335-42, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12437126

RESUMO

Cdc37 associates with the heat-shock protein 90 (Hsp90) molecular chaperone as one of several auxiliary proteins that are collectively referred to as Hsp90 co-chaperones. Cdc37 has been proposed to be a specificity factor for Hsp90, directing it notably towards kinases. It is not known whether Cdc37 is essential for viability in the budding yeast Saccharomyces cerevisiae because of Hsp90-dependent or -independent functions or both. Sti1 and Cpr7 are non-essential Hsp90 co-chaperones that bind to a common surface on Hsp90 through tetratricopeptide repeats (TPR). We have found that Sti1 is specifically retained from yeast extracts by immobilized Cdc37. Similarly, the endogenous proteins are also found in a complex. Moreover, purified recombinant Sti1 and Cdc37 interact in the complete absence of Hsp90. Complexes between Cdc37 and Sti1 are not unique to this TPR protein since endogenous Cdc37 can be co-purified with exogenously expressed Cpr7 fused to glutathione-S-transferase. The heterogeneity of Cdc37 complexes, both with and without Hsp90, may expand the functional diversity of Cdc37. Here we show that the combination of cdc37 and sti1 mutations is synthetically lethal, suggesting that direct contacts between Cdc37 and Sti1 may at least contribute to vital functions in yeast.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Ciclo Celular/fisiologia , Ciclofilinas , Proteínas de Drosophila , Proteínas de Choque Térmico HSP90/fisiologia , Chaperonas Moleculares/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Peptidil-Prolil Isomerase F , Escherichia coli/genética , Teste de Complementação Genética , Glutationa Transferase , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peso Molecular , Peptidilprolil Isomerase/fisiologia , Testes de Precipitina , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae
20.
Nucleic Acids Res ; 30(10): e46, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12000851

RESUMO

Methods that allow the specific silencing of a desired gene are invaluable tools for research. One of these is based on RNA interference (RNAi), a process by which double-stranded RNA (dsRNA) specifically suppresses the expression of a target mRNA. Recently, it has been reported that RNAi also works in mammalian cells if small interfering RNAs (siRNAs) are used to avoid activation of the interferon system by long dsRNA. Thus, RNAi could become a major tool for reverse genetics in mammalian systems. However, the high cost and the limited availability of the short synthetic RNAs and the lack of certainty that a designed siRNA will work present major drawbacks of the siRNA technology. Here we present an alternative method to obtain cheap and large amounts of siRNAs using T7 RNA polymerase. With multiple transfection procedures, including calcium phosphate co-precipitation, we demonstrate silencing of both exogenous and endogenous genes.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , RNA de Cadeia Dupla/metabolismo , Linhagem Celular , Clonagem Molecular/métodos , Inativação Gênica , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Plasmídeos/genética , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...