Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(19): 25120-25128, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469619

RESUMO

For the accommodation of mobile, business, and residential service in the same optical distribution network, we experimentally demonstrate 50 Gb/s (25 Gb/s × 2 wavelengths) wireless and wired service converged optical access network with 64-way power split over 20 km of single mode fiber in 1300 nm band. Applying simple Reed-Solomon based forward-error-correction and a cost-effective avalanche photodiode receiver without using an optical amplifier realize the 64-way power split. Accommodating dynamic bandwidth allocation and open interface control with OpenDaylight (ODL) controller via network configuration protocol (NETCONF) interface are demonstrated. Furthermore, error-free packet transmission of 50 Gb/s with low latency and guaranteed bandwidth are successfully demonstrated.

2.
Opt Express ; 24(13): 13984-91, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410561

RESUMO

We demonstrate a real-time 25-Gb/s PON prototype with ethernet-PON MAC/PHY, O-band transmitter, and cost-effective APD receivers. With applying parasitic inductance and capacitance reduction, the frequency response of 25-Gb/s APD ROSA with TO46-pacakge is improved to support high receiver sensitivity around -25 dBm at the BER of 10-3. The 30 dB power budget of 25 Gb/s downstream is achieved at the BER of 10-3. With long-term ethernet packet transmission, 25 Gigabit and 10 Gigabit ethernet traffics are successfully transmitted through the 20-km SMF over 14 hour's observation window. Furthermore, QoS and bandwidth re-assignment function of the 25-Gb/s PON prototype are successfully demonstrated with respect to residential, business and mobile backhaul services in ONUs.

3.
Opt Express ; 22(18): 22133-45, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25321588

RESUMO

In a passive optical network (PON), discovery is a process that detects and registers newly connected optical network units (ONUs). A long-reach PON requires a longer discovery window, e.g., at least 1 ms for 100 km, due to the increased round-trip time between an optical line terminal (OLT) and an ONU. The longer discovery window consumes more network resources and issues longer service-interruption time. From this motivation, for a long-reach orthogonal frequency-division multiple access (OFDMA)-PON, we propose a discovery method using multiple subchannels, where each subchannel consists of one or several subcarrier(s). Compared to discovery using a single channel, the proposed discovery method can increase the number of successfully detected ONUs at the same resources (i.e., for a discovery window) and ensure seamless service support to already registered ONUs, by assigning some subchannels for discovery and the remainder for data transmission. We analyze the discovery efficiency (i.e., the number of successfully detected ONUs in the discovery process) based on a probability and optimize the discovery window size by numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...