Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Aging ; 9(1): 15, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316516

RESUMO

Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodelling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodelling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodelling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodelling by spreading senescence to other cell-types. Collectively this study presents the demonstration that senescent cardiomyocytes are major contributors to myocardial remodelling and dysfunction following a myocardial infarction. Therefore, to maximise the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimise senolytic strategies to target this cell lineage.

3.
Res Sq ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090497

RESUMO

Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodeling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodeling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodeling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodeling by spreading senescence to other cell-types. Collectively this study presents a novel demonstration that senescent cardiomyocytes are major contributors to myocardial remodeling and dysfunction following a myocardial infarction. Therefore, to maximize the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimize senolytic strategies to target this cell lineage.

4.
Cardiovasc Drugs Ther ; 36(1): 187-196, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32979174

RESUMO

Ageing is the biggest risk factor for impaired cardiovascular health, with cardiovascular disease being the leading cause of death in 40% of individuals over 65 years old. Ageing is associated with both an increased prevalence of cardiovascular disease including heart failure, coronary artery disease, and myocardial infarction. Furthermore, ageing is associated with a poorer prognosis to these diseases. Genetic models allowing the elimination of senescent cells revealed that an accumulation of senescence contributes to the pathophysiology of cardiovascular ageing and promotes the progression of cardiovascular disease through the expression of a proinflammatory and profibrotic senescence-associated secretory phenotype. These studies have resulted in an effort to identify pharmacological therapeutics that enable the specific elimination of senescent cells through apoptosis induction. These senescent cell apoptosis-inducing compounds are termed senolytics and their potential to ameliorate age-associated cardiovascular disease is the focus of this review.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Senescência Celular/efeitos dos fármacos , Senoterapia/farmacologia , Idoso , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Doenças Cardiovasculares/fisiopatologia , Progressão da Doença , Humanos , Prognóstico , Fatores de Risco , Fenótipo Secretor Associado à Senescência/fisiologia
5.
Mech Ageing Dev ; 198: 111540, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34237321

RESUMO

Ageing is the biggest risk factor for impaired cardiovascular health, with cardiovascular disease being the cause of death in 40 % of individuals over 65 years old. Ageing is associated with an increased prevalence of atherosclerosis, coronary artery stenosis and subsequent myocardial infarction, thoracic aortic aneurysm, valvular heart disease and heart failure. An accumulation of senescence and increased inflammation, caused by the senescence-associated secretory phenotype, have been implicated in the aetiology and progression of these age-associated diseases. Recently it has been demonstrated that compounds targeting components of anti-apoptotic pathways expressed by senescent cells can preferentially induce senescence cells to apoptosis and have been termed senolytics. In this review, we discuss the evidence demonstrating that senescence contributes to cardiovascular disease, with a particular focus on studies that indicate the promise of senotherapy. Based on these data we suggest novel indications for senolytics as a treatment of cardiovascular diseases which have yet to be studied in the context of senotherapy. Finally, while the potential benefits are encouraging, several complications may result from senolytic treatment. We, therefore, consider these challenges in the context of the cardiovascular system.


Assuntos
Envelhecimento , Proteínas Reguladoras de Apoptose/metabolismo , Doenças Cardiovasculares , Senescência Celular , Senoterapia/farmacologia , Envelhecimento/imunologia , Envelhecimento/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Humanos , Inflamação/metabolismo , Fenótipo Secretor Associado à Senescência , Transdução de Sinais/efeitos dos fármacos
6.
Aging Cell ; 19(10): e13249, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32996233

RESUMO

A key component of cardiac ischemia-reperfusion injury (IRI) is the increased generation of reactive oxygen species, leading to enhanced inflammation and tissue dysfunction in patients following intervention for myocardial infarction. In this study, we hypothesized that oxidative stress, due to ischemia-reperfusion, induces senescence which contributes to the pathophysiology of cardiac IRI. We demonstrate that IRI induces cellular senescence in both cardiomyocytes and interstitial cell populations and treatment with the senolytic drug navitoclax after ischemia-reperfusion improves left ventricular function, increases myocardial vascularization, and decreases scar size. SWATH-MS-based proteomics revealed that biological processes associated with fibrosis and inflammation that were increased following ischemia-reperfusion were attenuated upon senescent cell clearance. Furthermore, navitoclax treatment reduced the expression of pro-inflammatory, profibrotic, and anti-angiogenic cytokines, including interferon gamma-induced protein-10, TGF-ß3, interleukin-11, interleukin-16, and fractalkine. Our study provides proof-of-concept evidence that cellular senescence contributes to impaired heart function and adverse remodeling following cardiac ischemia-reperfusion. We also establish that post-IRI the SASP plays a considerable role in the inflammatory response. Subsequently, senolytic treatment, at a clinically feasible time-point, attenuates multiple components of this response and improves clinically important parameters. Thus, cellular senescence represents a potential novel therapeutic avenue to improve patient outcomes following cardiac ischemia-reperfusion.


Assuntos
Senescência Celular/fisiologia , Traumatismo por Reperfusão/metabolismo , Feminino , Humanos , Masculino
7.
Aging Cell ; 18(3): e12945, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30920115

RESUMO

Cardiovascular disease is the leading cause of death in individuals over 60 years old. Aging is associated with an increased prevalence of coronary artery disease and a poorer prognosis following acute myocardial infarction (MI). With age, senescent cells accumulate in tissues, including the heart, and contribute to age-related pathologies. However, the role of senescence in recovery following MI has not been investigated. In this study, we demonstrate that treatment of aged mice with the senolytic drug, navitoclax, eliminates senescent cardiomyocytes and attenuates profibrotic protein expression in aged mice. Importantly, clearance of senescent cells improved myocardial remodelling and diastolic function as well as overall survival following MI. These data provide proof-of-concept evidence that senescent cells are major contributors to impaired function and increased mortality following MI and that senolytics are a potential new therapeutic avenue for MI.


Assuntos
Envelhecimento/efeitos dos fármacos , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Sulfonamidas/farmacologia , Doença Aguda , Compostos de Anilina/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Sulfonamidas/administração & dosagem
8.
EMBO J ; 38(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737259

RESUMO

Ageing is the biggest risk factor for cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening, has been implicated in age-related tissue dysfunction. Here, we address the question of how senescence is induced in rarely dividing/post-mitotic cardiomyocytes and investigate whether clearance of senescent cells attenuates age-related cardiac dysfunction. During ageing, human and murine cardiomyocytes acquire a senescent-like phenotype characterised by persistent DNA damage at telomere regions that can be driven by mitochondrial dysfunction and crucially can occur independently of cell division and telomere length. Length-independent telomere damage in cardiomyocytes activates the classical senescence-inducing pathways, p21CIP and p16INK4a, and results in a non-canonical senescence-associated secretory phenotype, which is pro-fibrotic and pro-hypertrophic. Pharmacological or genetic clearance of senescent cells in mice alleviates detrimental features of cardiac ageing, including myocardial hypertrophy and fibrosis. Our data describe a mechanism by which senescence can occur and contribute to age-related myocardial dysfunction and in the wider setting to ageing in post-mitotic tissues.


Assuntos
Cardiomegalia/patologia , Senescência Celular , Dano ao DNA , Fibrose/patologia , Mitose , Miócitos Cardíacos/patologia , Encurtamento do Telômero , Envelhecimento , Animais , Cardiomegalia/etiologia , Feminino , Fibrose/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monoaminoxidase/fisiologia , Miócitos Cardíacos/metabolismo , Fenótipo , RNA/fisiologia , Ratos Sprague-Dawley , Telomerase/fisiologia
9.
ERJ Open Res ; 4(4)2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30406124

RESUMO

After MDT work-up and review, gastro-oesophageal reflux and pulmonary aspiration were found to be common in IPF patients; surgery was recommended in only 10% http://ow.ly/rO3T30lU17o.

10.
Arterioscler Thromb Vasc Biol ; 38(6): 1283-1296, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29599138

RESUMO

OBJECTIVE: Atherosclerosis is an age-related disease characterized by systemic oxidative stress and low-grade inflammation. The role of telomerase and telomere length in atherogenesis remains contentious. Short telomeres of peripheral leukocytes are predictive for coronary artery disease. Conversely, attenuated telomerase has been demonstrated to be protective for atherosclerosis. Hence, a potential causative role of telomerase in atherogenesis is critically debated. APPROACH AND RESULTS: In this study, we used multiple mouse models to investigate the regulation of telomerase under oxidative stress as well as its impact on atherogenesis in vitro and in vivo. Using primary lymphocytes and myeloid cell cultures, we demonstrate that cultivation under hyperoxic conditions induced oxidative stress resulting in chronic activation of CD4+ cells and significantly reduced CD4+ T-cell proliferation. The latter was telomerase dependent because oxidative stress had no effect on the proliferation of primary lymphocytes isolated from telomerase knockout mice. In contrast, myeloid cell proliferation was unaffected by oxidative stress nor reliant on telomerase. Telomerase reverse transcriptase deficiency had no effect on regulatory T-cell (Treg) numbers in vivo or suppressive function ex vivo. Adoptive transfer of telomerase reverse transcriptase-/- Tregs into Rag2-/- ApoE-/- (recombination activating gene 2/apolipoprotein E) double knockout mice demonstrated that telomerase function was not required for the ability of Tregs to protect against atherosclerosis. However, telomere length was critical for Treg function. CONCLUSIONS: Telomerase contributes to lymphocyte proliferation but plays no major role in Treg function, provided that telomere length is not critically short. We suggest that oxidative stress may contribute to atherosclerosis via suppression of telomerase and acceleration of telomere attrition in Tregs.


Assuntos
Aterosclerose/enzimologia , Linfócitos T CD4-Positivos/enzimologia , Proliferação de Células , Ativação Linfocitária , Linfócitos T Reguladores/enzimologia , Telomerase/metabolismo , Transferência Adotiva , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/transplante , Células Cultivadas , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Knockout , Camundongos Knockout para ApoE , Estresse Oxidativo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Telomerase/deficiência , Telomerase/genética , Homeostase do Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...