Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968232

RESUMO

The ongoing transition toward electric vehicles (EVs) is changing materials used for vehicle production, of which the consequences for the environmental performance of EVs are not well understood and managed. We demonstrate that electrification coupled with lightweighting of automobiles will lead to significant changes in the industry's demand not only for battery materials but also for other materials used throughout the entire vehicle. Given the automotive industry's substantial consumption of raw materials, changes in its material demands are expected to trigger volatilities in material prices, consequently impacting the material composition and attractiveness of EVs. In addition, the materials recovered during end-of-life recycling of EVs as the vehicle fleet turns over will impact recycled material supplies both positively and negatively, impacting material availabilities and the economic incentive to engage in recycling. These supply chain impacts will influence material usage and the associated environmental performance of not only the automotive sector but also other metal-heavy industries such as construction. In light of these challenges, we propose the need for new research to understand the dynamic materials impacts of the EV transition that encompasses its implications on EV adoption and fleet life cycle environmental performance. Effectively coordinating the coevolution of material supply chains is crucial for making the sustainable transition to EVs a reality.

2.
Waste Manag ; 68: 421-433, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739026

RESUMO

Stricter vehicle emission legislation has led to the increasing use of lightweight materials and multi-material concepts to reduce the vehicle mass. To account for the complexity of multi-material vehicle designs, the choice of joining techniques used is becoming more diverse. Moreover, the different material combinations, and their respective joining methods play an important role in determining the potential of full material separation in a closed-loop system. This paper evaluates the types of joining technologies used in the automotive industry, and identifies those that hinder the sorting of ELV materials. The study is based on an industrial shredding trial of car doors. Observations from the case study showed that steel screws and bolts are increasingly used to combine different material types and are less likely to be perfectly liberated during the shredding process. The characteristics of joints that lead to impurities and valuable material losses, such as joint strength, material type, size, diameter, location, and protrusion level, can influence the material liberation in the current sorting practices and thus, lead to ELV waste minimisation. Additionally, the liberation of joints is also affected by the density and thickness of materials being joined. Correlation analyses are carried out to further support the influence of mechanical screws and bolts on material separation efficiencies. The observations are representative of the initial phases of current global ELV sorting practices.


Assuntos
Automóveis , Reciclagem , Tecnologia/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...