Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745108

RESUMO

In developing rats, behavioral state exerts a profound modulatory influence on neural activity throughout the sensorimotor system, including primary motor cortex (M1). We hypothesized that similar state-dependent modulation occurs in prefrontal cortical areas with which M1 forms functional connections. Here, using 8- and 12-day-old rats cycling freely between sleep and wake, we record neural activity in M1, secondary motor cortex (M2), and medial prefrontal cortex (mPFC). At both ages in all three areas, neural activity increased during active sleep (AS) compared with wake. Also, regardless of behavioral state, neural activity in all three areas increased during periods when limbs were moving. The movement-related activity in M2 and mPFC, like that in M1, is driven by sensory feedback. Our results, which diverge from those of previous studies using anesthetized pups, demonstrate that AS-dependent modulation and sensory responsivity extend to prefrontal cortex. These findings expand the range of possible factors shaping the activity-dependent development of higher-order cortical areas.


Assuntos
Córtex Motor , Sono , Ratos , Animais , Córtex Pré-Frontal , Sono REM , Movimento
2.
Neuron ; 110(20): 3230-3242, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36084653

RESUMO

A defining feature of early infancy is the immense neural plasticity that enables animals to develop a brain that is functionally integrated with a growing body. Early infancy is also defined as a period dominated by sleep. Here, we describe three conceptual frameworks that vary in terms of whether and how they incorporate sleep as a factor in the activity-dependent development of sensory and sensorimotor systems. The most widely accepted framework is exemplified by the visual system where retinal waves seemingly occur independent of sleep-wake states. An alternative framework is exemplified by the sensorimotor system where sensory feedback from sleep-specific movements activates the brain. We prefer a third framework that encompasses the first two but also captures the diverse ways in which sleep modulates activity-dependent development throughout the nervous system. Appreciation of the third framework will spur progress toward a more comprehensive and cohesive understanding of both typical and atypical neurodevelopment.


Assuntos
Encéfalo , Sono , Animais , Sono/fisiologia , Encéfalo/fisiologia , Retroalimentação Sensorial
3.
Curr Biol ; 31(24): 5501-5511.e5, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34727521

RESUMO

With our eyes closed, we can track a limb's moment-to-moment location in space. If this capacity relied solely on sensory feedback from the limb, we would always be a step behind because sensory feedback takes time: for the execution of rapid and precise movements, such lags are not tolerable. Nervous systems solve this problem by computing representations-or internal models-that mimic movements as they are happening, with the associated neural activity occurring after the motor command but before sensory feedback. Research in adults indicates that the cerebellum is necessary to compute internal models. What is not known, however, is when-and under what conditions-this computational capacity develops. Here, taking advantage of the unique kinematic features of the discrete, spontaneous limb twitches that characterize active sleep, we captured the developmental emergence of a cerebellar-dependent internal model. Using rats at postnatal days (P) 12, P16, and P20, we compared neural activity in the ventral posterior (VP) and ventral lateral (VL) thalamic nuclei, both of which receive somatosensory input but only the latter of which receives cerebellar input. At all ages, twitch-related activity in VP lagged behind the movement, consistent with sensory processing; similar activity was observed in VL through P16. At P20, however, VL activity no longer lagged behind movement but instead precisely mimicked the movement itself; this activity depended on cerebellar input. In addition to demonstrating the emergence of internal models of movement, these findings implicate twitches in their development and calibration through, at least, the preweanling period.


Assuntos
Cerebelo , Movimento , Animais , Cerebelo/fisiologia , Retroalimentação Sensorial , Movimento/fisiologia , Ratos , Sono , Tálamo/fisiologia
4.
J Neurosci ; 41(32): 6905-6918, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34281990

RESUMO

Primary motor cortex (M1) undergoes protracted development in mammals, functioning initially as a sensory structure. Throughout the first postnatal week in rats, M1 is strongly activated by self-generated forelimb movements-especially by the twitches that occur during active sleep. Here, we quantify the kinematic features of forelimb movements to reveal receptive-field properties of individual units within the forelimb region of M1. At postnatal day 8 (P8), nearly all units were strongly modulated by movement amplitude, especially during active sleep. By P12, only a minority of units continued to exhibit amplitude tuning, regardless of behavioral state. At both ages, movement direction also modulated M1 activity, though to a lesser extent. Finally, at P12, M1 population-level activity became more sparse and decorrelated, along with a substantial alteration in the statistical distribution of M1 responses to limb movements. These findings reveal a transition toward a more complex and informationally rich representation of movement long before M1 develops its motor functionality.SIGNIFICANCE STATEMENT Primary motor cortex (M1) plays a fundamental role in the generation of voluntary movements and motor learning in adults. In early development, however, M1 functions as a prototypical sensory structure. Here, we demonstrate in infant rats that M1 codes for the kinematics of self-generated limb movements long before M1 develops its capacity to drive movements themselves. Moreover, we identify a key transition during the second postnatal week in which M1 activity becomes more informationally complex. Together, these findings further delineate the complex developmental path by which M1 develops its sensory functions in support of its later-emerging motor capacities.


Assuntos
Membro Anterior/fisiologia , Córtex Motor/crescimento & desenvolvimento , Córtex Motor/fisiologia , Movimento/fisiologia , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Ratos , Ratos Sprague-Dawley
5.
Curr Biol ; 31(15): 3426-3432.e4, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139191

RESUMO

In humans and other mammals, the stillness of sleep is punctuated by bursts of rapid eye movements (REMs) and myoclonic twitches of the limbs.1 Like the spontaneous activity that arises from the sensory periphery in other modalities (e.g., retinal waves),2 sensory feedback arising from twitches is well suited to drive activity-dependent development of the sensorimotor system.3 It is partly because of the behavioral activation of REM sleep that this state is also called active sleep (AS), in contrast with the behavioral quiescence that gives quiet sleep (QS)-the second major stage of sleep-its name. In human infants, for which AS occupies 8 h of each day,4 twitching helps to identify the state;5-8 nonetheless, we know little about the structure and functions of twitching across development. Recently, in sleeping infants,9 we documented a shift in the temporal expression of twitching beginning around 3 months of age that suggested a qualitative change in how twitches are produced. Here, we combine behavioral analysis with high-density electroencephalography (EEG) to demonstrate that this shift reflects the emergence of limb twitches during QS. Twitches during QS are not only unaccompanied by REMs, but they also occur synchronously with sleep spindles, a hallmark of QS. As QS-related twitching increases with age, sleep spindle rate also increases along the sensorimotor strip. The emerging synchrony between subcortically generated twitches and cortical oscillations suggests the development of functional connectivity among distant sensorimotor structures, with potential implications for detecting and explaining atypical developmental trajectories.


Assuntos
Movimento , Sono de Ondas Lentas , Sono , Eletroencefalografia , Retroalimentação Sensorial , Humanos , Lactente , Sono REM
6.
J Neurosci ; 41(15): 3418-3431, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33622773

RESUMO

It is generally supposed that primary motor cortex (M1) receives somatosensory input predominantly via primary somatosensory cortex (S1). However, a growing body of evidence indicates that M1 also receives direct sensory input from the thalamus, independent of S1; such direct input is particularly evident at early ages before M1 contributes to motor control. Here, recording extracellularly from the forelimb regions of S1 and M1 in unanesthetized rats at postnatal day (P)8 and P12, we compared S1 and M1 responses to self-generated (i.e., reafferent) forelimb movements during active sleep and wake, and to other-generated (i.e., exafferent) forelimb movements. At both ages, reafferent responses were processed in parallel by S1 and M1; in contrast, exafferent responses were processed in parallel at P8 but serially, from S1 to M1, at P12. To further assess this developmental difference in processing, we compared exafferent responses to proprioceptive and tactile stimulation. At both P8 and P12, proprioceptive stimulation evoked parallel responses in S1 and M1, whereas tactile stimulation evoked parallel responses at P8 and serial responses at P12. Independent of the submodality of exafferent stimulation, pairs of S1-M1 units exhibited greater coactivation during active sleep than wake. These results indicate that S1 and M1 independently develop somatotopy before establishing the interactive relationship that typifies their functionality in adults.SIGNIFICANCE STATEMENT Learning any new motor task depends on the ability to use sensory information to update motor outflow. Thus, to understand motor learning, we must also understand how animals process sensory input. Primary somatosensory cortex (S1) and primary motor cortex (M1) are two interdependent structures that process sensory input throughout life. In adults, the functional relationship between S1 and M1 is well established; however, little is known about how S1 and M1 begin to transmit or process sensory information in early life. In this study, we investigate the early development of S1 and M1 as a sensory processing unit. Our findings provide new insights into the fundamental principles of sensory processing and the development of functional connectivity between these important sensorimotor structures.


Assuntos
Córtex Motor/fisiologia , Córtex Somatossensorial/fisiologia , Percepção do Tato , Animais , Feminino , Membro Anterior/inervação , Membro Anterior/fisiologia , Masculino , Córtex Motor/crescimento & desenvolvimento , Movimento , Ratos , Ratos Sprague-Dawley , Sono , Córtex Somatossensorial/crescimento & desenvolvimento , Vigília
7.
Curr Opin Physiol ; 15: 14-22, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32864534

RESUMO

Given the prevalence of sleep in early development, any satisfactory account of infant brain activity must consider what happens during sleep. Only recently, however, has it become possible to record sleep-related brain activity in newborn rodents. Using such methods in rat pups, it is now clear that sleep, more so than wake, provides a critical context for the processing of sensory input and the expression of functional connectivity throughout the sensorimotor system. In addition, sleep uniquely reveals functional activity in the developing primary motor cortex, which establishes a somatosensory map long before its role in motor control emerges. These findings will inform our understanding of the developmental processes that contribute to the nascent sense of embodiment in human infants.

8.
Curr Biol ; 30(12): 2404-2410.e4, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413304

RESUMO

Cortical development is an activity-dependent process [1-3]. Regarding the role of activity in the developing somatosensory cortex, one persistent debate concerns the importance of sensory feedback from self-generated movements. Specifically, recent studies claim that cortical activity is generated intrinsically, independent of movement [3, 4]. However, other studies claim that behavioral state moderates the relationship between movement and cortical activity [5-7]. Thus, perhaps inattention to behavioral state leads to failures to detect movement-driven activity [8]. Here, we resolve this issue by associating local field activity (i.e., spindle bursts) and unit activity in the barrel cortex of 5-day-old rats with whisker movements during wake and myoclonic twitches of the whiskers during active (REM) sleep. Barrel activity increased significantly within 500 ms of whisker movements, especially after twitches. Also, higher-amplitude movements were more likely to trigger barrel activity; when we controlled for movement amplitude, barrel activity was again greater after a twitch than a wake movement. We then inverted the analysis to assess the likelihood that increases in barrel activity were preceded within 500 ms by whisker movements: at least 55% of barrel activity was attributable to sensory feedback from whisker movements. Finally, when periods with and without movement were compared, 70%-75% of barrel activity was movement related. These results confirm the importance of sensory feedback from movements in driving activity in sensorimotor cortex and underscore the necessity of monitoring sleep-wake states to ensure accurate assessments of the contributions of the sensory periphery to activity in developing somatosensory cortex.


Assuntos
Vias Aferentes/fisiologia , Retroalimentação Sensorial/fisiologia , Movimento/fisiologia , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
9.
Curr Sleep Med Rep ; 5(3): 112-117, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31662954

RESUMO

PURPOSE OF REVIEW: Sleep-wake states modulate cortical activity in adults. In infants, however, such modulation is less clear; indeed, early cortical activity comprises bursts of neural activity driven predominantly by peripheral sensory input. Consequently, in many studies of sensory development in rodents, sensory processing has been carefully investigated, but the modulatory role of behavioral state has typically been ignored. RECENT FINDINGS: In the developing visual and somatosensory systems, it is now known that sleep and wake states modulate sensory processing. Further, in both systems, the nature of this modulation shifts rapidly during the second postnatal week, with subcortical nuclei changing how they gate sensory inputs. SUMMARY: The interactions among sleep and wake movements, sensory processing, and development are dynamic and complex. Now that established methods exist to record neural activity in unanesthetized infant animals, we can provide a more comprehensive understanding of how infant sleep-wake states interact with sensory-driven responses to promote developmental plasticity.

10.
J Comp Neurol ; 527(10): 1675-1688, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30444542

RESUMO

Early loss of vision produces dramatic changes in the functional organization and connectivity of the neocortex in cortical areas that normally process visual inputs, such as the primary and second visual area. This loss also results in alterations in the size, functional organization, and neural response properties of the primary somatosensory area, S1. However, the anatomical substrate for these functional changes in S1 has never been described. In the present investigation, we quantified the cortical and subcortical connections of S1 in animals that were bilaterally enucleated very early in development, prior to the formation of retino-geniculate and thalamocortical pathways. We found that S1 receives dense inputs from novel cortical fields, and that the density of existing cortical and thalamocortical connections was altered. Our results demonstrate that sensory systems develop in tandem and that alterations in sensory input in one system can affect the connections and organization of other sensory systems. Thus, therapeutic intervention following early loss of vision should focus not only on restoring vision, but also on augmenting the natural plasticity of the spared systems.


Assuntos
Cegueira/fisiopatologia , Vias Neurais/crescimento & desenvolvimento , Plasticidade Neuronal/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Tálamo/crescimento & desenvolvimento , Animais , Feminino , Masculino , Monodelphis
11.
Elife ; 72018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30574868

RESUMO

Before primary motor cortex (M1) develops its motor functions, it functions like a somatosensory area. Here, by recording from neurons in the forelimb representation of M1 in postnatal day (P) 8-12 rats, we demonstrate a rapid shift in its sensory responses. At P8-10, M1 neurons respond overwhelmingly to feedback from sleep-related twitches of the forelimb, but the same neurons do not respond to wake-related movements. By P12, M1 neurons suddenly respond to wake movements, a transition that results from opening the sensory gate in the external cuneate nucleus. Also at P12, fewer M1 neurons respond to individual twitches, but the full complement of twitch-related feedback observed at P8 is unmasked through local disinhibition. Finally, through P12, M1 sensory responses originate in the deep thalamorecipient layers, not primary somatosensory cortex. These findings demonstrate that M1 initially establishes a sensory framework upon which its later-emerging role in motor control is built.


Assuntos
Membro Anterior/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Animais Recém-Nascidos , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Membro Anterior/citologia , Masculino , Bulbo/citologia , Bulbo/fisiologia , Córtex Motor/citologia , Movimento/fisiologia , Ratos Sprague-Dawley , Sono/fisiologia , Córtex Somatossensorial/citologia , Fatores de Tempo
12.
Trends Neurosci ; 40(10): 603-612, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28843655

RESUMO

Amputees who wish to rid themselves of a phantom limb must weaken the neural representation of the absent limb. Conversely, amputees who wish to replace a lost limb must assimilate a neuroprosthetic with the existing neural representation. Whether we wish to remove a phantom limb or assimilate a synthetic one, we will benefit from knowing more about the developmental process that enables embodiment. A potentially critical contributor to that process is the spontaneous activity - in the form of limb twitches - that occurs exclusively and abundantly during active (REM) sleep, a particularly prominent state in early development. The sensorimotor circuits activated by twitching limbs, and the developmental context in which activation occurs, could provide a roadmap for creating neuroprosthetics that feel as if they are part of the body.


Assuntos
Extremidades/crescimento & desenvolvimento , Próteses Neurais , Membro Fantasma/reabilitação , Animais , Extremidades/fisiopatologia , Humanos , Movimento/fisiologia , Membro Fantasma/fisiopatologia , Sono/fisiologia
13.
J Neurophysiol ; 117(2): 566-581, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852732

RESUMO

The functional organization of the primary visual area (V1) and the importance of sensory experience in its normal development have been well documented in eutherian mammals. However, very few studies have investigated the response properties of V1 neurons in another large class of mammals, or whether sensory experience plays a role in shaping their response properties. Thus we reared opossums (Monodelphis domestica) in normal and vertically striped cages until they reached adulthood. They were then anesthetized using urethane, and electrophysiological techniques were used to examine neuronal responses to different orientations, spatial and temporal frequencies, and contrast levels. For normal opossums, we observed responses to the temporal and spatial characteristics of the stimulus to be similar to those described in small, nocturnal, eutherian mammals such as rats and mice; neurons in V1 responded maximally to stimuli at 0.09 cycles per degree and 2.12 cycles per second. Unlike other eutherians, but similar to other marsupials investigated, only 40% of the neurons were orientation selective. In stripe-reared animals, neurons were significantly more likely to respond to vertical stimuli at a wider range of spatial frequencies, and were more sensitive to gratings at lower contrast values compared with normal animals. These results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors. NEW & NOTEWORTHY: These results are the first description of visual response properties of the most commonly studied marsupial model organism, the short-tailed opossum (Monodelphis domestica). Further, these results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.


Assuntos
Adaptação Fisiológica/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Visual/citologia , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Animais , Biofísica , Mapeamento Encefálico , Feminino , Masculino , Monodelphis , Estimulação Luminosa , Fatores de Tempo , Campos Visuais/fisiologia
14.
J Comp Neurol ; 522(10): 2286-98, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24414857

RESUMO

In the current investigation we examined the number and proportion of neuronal and non-neuronal cells in the primary sensory areas of the neocortex of a South American marsupial, the short-tailed opossum (Monodelphis domestica). The primary somatosensory (S1), auditory (A1), and visual (V1) areas were dissected from the cortical sheet and compared with each other and the remaining neocortex using the isotropic fractionator technique. We found that although the overall sizes of V1, S1, A1, and the remaining cortical regions differed from each other, these divisions of the neocortex contained the same number of neurons, but the remaining cortex contained significantly more non-neurons than the primary sensory regions. In addition, the percent of neurons was higher in A1 than in the remaining cortex and the cortex as a whole. These results are similar to those seen in non-human primates. Furthermore, these results indicate that in some respects, such as number of neurons, the neocortex is homogenous across its extent, whereas in other aspects of organization, such as non-neuronal number and percentage of neurons, there is non-uniformity. Whereas the overall pattern of neuronal distribution is similar between short-tailed opossums and eutherian mammals, short-tailed opossum have a much lower cellular and neuronal density than other eutherian mammals. This suggests that the high neuronal density cortices of mammals such as rodents and primates may be a more recently evolved characteristic that is restricted to eutherians, and likely contributes to the complex behaviors we see in modern mammals.


Assuntos
Monodelphis/anatomia & histologia , Neocórtex/citologia , Animais , Córtex Auditivo/citologia , Contagem de Células , Feminino , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Tamanho do Órgão , Córtex Somatossensorial/citologia , Córtex Visual/citologia
15.
Front Neuroanat ; 8: 163, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25620915

RESUMO

The current experiments build upon previous studies designed to reveal the network of parietal cortical areas present in the common mammalian ancestor. Understanding this ancestral network is essential for highlighting the basic somatosensory circuitry present in all mammals, and how this basic plan was modified to generate species specific behaviors. Our animal model, the short-tailed opossum (Monodelphis domestica), is a South American marsupial that has been proposed to have a similar ecological niche and morphology to the earliest common mammalian ancestor. In this investigation, we injected retrograde neuroanatomical tracers into the face and body representations of primary somatosensory cortex (S1), the rostral and caudal somatosensory fields (SR and SC), as well as a multimodal region (MM). Projections from different architectonically defined thalamic nuclei were then quantified. Our results provide further evidence to support the hypothesized basic mammalian plan of thalamic projections to S1, with the lateral and medial ventral posterior thalamic nuclei (VPl and VPm) projecting to S1 body and S1 face, respectively. Additional strong projections are from the medial division of posterior nucleus (Pom). SR receives projections from several midline nuclei, including the medial dorsal, ventral medial nucleus, and Pom. SC and MM show similar patterns of connectivity, with projections from the ventral anterior and ventral lateral nuclei, VPm and VPl, and the entire posterior nucleus (medial and lateral). Notably, MM is distinguished from SC by relatively dense projections from the dorsal division of the lateral geniculate nucleus and pulvinar. We discuss the finding that S1 of the short-tailed opossum has a similar pattern of projections as other marsupials and mammals, but also some distinct projections not present in other mammals. Further we provide additional support for a primitive posterior parietal cortex which receives input from multiple modalities.

16.
Front Hum Neurosci ; 7: 620, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24130524

RESUMO

The neocortex is the part of the mammalian brain that is involved in perception, cognition, and volitional motor control. It is a highly dynamic structure that is dramatically altered within the lifetime of an animal and in different lineages throughout the course of evolution. These alterations account for the remarkable variations in behavior that species exhibit. Of particular interest is how these cortical phenotypes change within the lifetime of the individual and eventually evolve in species over time. Because we cannot study the evolution of the neocortex directly we use comparative analysis to appreciate the types of changes that have been made to the neocortex and the similarities that exist across taxa. Developmental studies inform us about how these phenotypic transitions may arise by alterations in developmental cascades or changes in the physical environment in which the brain develops. Both genes and the sensory environment contribute to aspects of the phenotype and similar features, such as the size of a cortical field, can be altered in a variety of ways. Although both genes and the laws of physics place constraints on the evolution of the neocortex, mammals have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution.

17.
Horm Behav ; 64(3): 557-65, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23763907

RESUMO

In several vertebrate species, the effects of estrogens on male aggressive behavior can be modulated by environmental cues. In song sparrows and rodents, estrogens modulate aggression in the nonbreeding season or winter-like short days, respectively. The behavioral effects of estrogens are rapid, which generally is considered indicative of nongenomic processes. The current study further examined the hypothesis that estradiol acts nongenomically under short days by utilizing a protein synthesis inhibitor, cycloheximide (CX). Mice were housed in either short or long day photoperiods, and treated with an aromatase inhibitor. One hour before resident-intruder testing mice were injected with either CX or saline vehicle, and 30 min later were treated orally with either cyclodextrin conjugated estradiol or vehicle. Under short days, mice treated with estradiol showed a rapid decrease in aggressive behavior, independent of CX administration. CX alone had no effect on aggression. These results show that protein synthesis is not required for the rapid effects of estradiol on aggression, strongly suggesting that these effects are mediated by nongenomic processes. We also showed that estradiol suppressed c-fos immunoreactivity in the caudal bed nucleus of the stria terminalis under short days. No effects of estradiol on behavior or c-fos expression were observed in mice housed under long days. Previously we had also demonstrated that cage bedding influenced the directional effects of estrogens on aggression. Here, we show that the phenomenon of rapid action of estradiol on aggression under short days is a robust result that generalizes to different bedding conditions.


Assuntos
Agressão/efeitos dos fármacos , Estradiol/farmacologia , Fotoperíodo , Animais , Arginina Vasopressina/metabolismo , Ritmo Circadiano/fisiologia , Cicloeximida/farmacologia , Feminino , Masculino , Peromyscus , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estações do Ano
18.
J Comp Neurol ; 521(17): 3877-97, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23784751

RESUMO

The current experiment is one of a series of comparative studies in our laboratory designed to determine the network of somatosensory areas that are present in the neocortex of the mammalian common ancestor. Such knowledge is critical for appreciating the basic functional circuitry that all mammals possess and how this circuitry was modified to generate species-specific, sensory-mediated behavior. Our animal model, the gray short-tailed opossum (Monodelphis domestica), is a marsupial that is proposed to represent this ancestral state more closely than most other marsupials and, to some extent, even monotremes. We injected neuroanatomical tracers into the primary somatosensory area (S1), rostral and caudal somatosensory fields (SR and SC, respectively), and multimodal cortex (MM) and determined their connections with other architectonically defined cortical fields. Our results show that S1 has dense intrinsic connections, dense projections from the frontal myelinated area (FM), and moderate projections from S2 and SC. SR has strong projections from several areas, including S1, SR, FM, and piriform cortex. SC has dense projections from S1, moderate to strong projections from other somatosensory areas, FM, along with connectivity from the primary (V1) and second visual areas. Finally, MM had dense intrinsic connections, dense projections from SC and V1, and moderate projections from S1. These data support the proposition that ancestral mammals likely had at least four specifically interconnected somatosensory areas, along with at least one multimodal area. We discuss the possibility that these additional somatosensory areas (SC and SR) are homologous to somatosensory areas in eutherian mammals.


Assuntos
Monodelphis/fisiologia , Rede Nervosa/química , Rede Nervosa/fisiologia , Córtex Somatossensorial/química , Córtex Somatossensorial/fisiologia , Animais , Encéfalo/fisiologia , Feminino , Masculino
19.
J Comp Neurol ; 521(11): 2602-20, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23322491

RESUMO

Throughout development both the body and the brain change at remarkable rates. Specifically, the number of cells in the brain undergoes dramatic nonlinear changes, first exponentially increasing in cell number and then decreasing in cell number. Different cell types, such as neurons and glia, undergo these changes at different stages of development. The current investigation used the isotropic fractionator method to examine the changes in cellular composition at multiple developmental milestones in the short-tailed opossum, Monodelphis domestica. Here we report several novel findings concerning marsupial brain development and organization. First, during the later stages of neurogenesis (P18), neurons make up most of the cells in the neocortex, although the total number of neurons remains the same throughout the life span. In contrast, in the subcortical regions, the number of neurons decreases dramatically after P18, and a converse relationship is observed for nonneuronal cells. In the cerebellum, the total number of cells gradually increases until P180 and then remains constant, and then the number of neurons is consistent across the developmental ages examined. For the three major structures examined, neuronal density and the percentage of neurons within a structure are highest during neurogenesis and then decrease after this point. Finally, the total number of neurons in the opossum brain is relatively low compared with other small-brained mammals such as mice. The relatively low number of neurons and correspondingly high number of nonneurons suggests that in the marsupial brain nonneurons may play a significant role in signal processing.


Assuntos
Encéfalo/crescimento & desenvolvimento , Gambás/crescimento & desenvolvimento , Envelhecimento/fisiologia , Animais , Encéfalo/citologia , Contagem de Células , Núcleo Celular/ultraestrutura , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiologia , Corantes Fluorescentes , Imuno-Histoquímica , Indóis , Neocórtex/crescimento & desenvolvimento , Neocórtex/fisiologia , Fixação de Tecidos
20.
Behav Ecol ; 23(5): 1049-1058, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22936842

RESUMO

In seasonally breeding mammals, vernal reproductive development is not directly triggered by increases in day length, rather, an endogenous program of photorefractoriness to short winter days initiates spontaneous development in advance of spring. The transition to the reproductive phenotype is energetically demanding. How food availability in late winter and early spring impacts the onset and expression of photorefractoriness is not known. In this study, male Siberian hamsters were born into a simulated natural photoperiod, and at the winter solstice, they were subjected to a restricted feeding protocol in which a daily food ration was provided in an amount equal to ad libitum (AL) intake during the weeks preceding the solstice. Over the next several months, AL-fed control hamsters exhibited spontaneous recrudescence or spontaneous development. In contrast, vernal reproductive development was abolished in most food-rationed hamsters. In food-rationed hamsters that did exhibit recrudescence, conspicuous delays in the onset of gonadal development and decreases in the magnitude of growth were evident. In all hamsters, the termination of food rationing triggered rapid gonadal development. The data indicate that late winter/early spring increases in environmental food availability are required for the normal manifestation of photorefractoriness-induced reproductive development and suggest that a function of photorefractoriness may be merely to disinhibit the reproductive axis from photoperiodic suppression. Vernal gonadal development or recrudescence appears to be strongly affected by proximate energy availability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...